⁶⁴Cr β⁻ decay (42.9 ms) 2011Li50,2005Ga01,2003So21

	His	tory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 178, 41 (2021).	12-Nov-2021

Parent: ⁶⁴Cr: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=42.9$ ms 10; $Q(\beta^-)=935\times10^1$ 30; $\%\beta^-$ decay=100.0

⁶⁴Cr-T_{1/2}: From ⁶⁴Cr Adopted Levels.

⁶⁴Cr-Q(β^{-}): From 2021Wa16.

2011Li50: ⁶⁴Cr isotope produced in the fragmentation of 130 MeV/nucleon ⁸⁶Kr beam with ⁹Be target. Fragments separated using A1900 Fragment separator at NSCL-MSU and identified by time-of-flight and energy loss. Beta-counting system (BCS) was used to detect β and γ rays, the latter detected by SeGA array of 16 Ge detectors. Measured E γ , I γ , β , γ (implants) correlations and $\gamma\gamma$ coin.

2005Ga01, 2003So21,1999So20: ⁶⁴Cr produced in fragmentation of ⁷⁶Ge³⁰⁺ beam on a ⁵⁸Ni target. The LISE3 achromatic spectrometer used to separate fragments, with magnetic rigidity tuned to optimize transmission of ⁶²V and ⁶⁴Cr fragments. Transmitted nuclei were identified by three consecutive Si detectors, where two measured energy loss and time-of-flight, while the third determined their residual energies. Measured $E\gamma$, $I\gamma$, $I\beta$, $\gamma\gamma$, $\beta\gamma$ coin, γ (t), lifetimes using four Ge detectors placed around a thick Si telescope. Half-lives were determined by a fitting procedure that involved five parameters: half-lives of mother, daughter and grand-daughter nuclei, the β -efficiency and the background rate over the 1 s collection time.

The decay scheme is considered incomplete by the evaluators.

⁶⁴Mn Levels

E(level) [†]	Jπ‡	T _{1/2} ‡	Comments
0.0 186.4 <i>3</i> 1148.7 <i>4</i>	$ 1^{(+)} (2^+) (1^+) $	90 ms 4	E(level): this level was first proposed by 2005GaZR.

[†] From $E\gamma$ data.

[‡] From the Adopted Levels.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
$(8.2 \times 10^3 \ 3)$	1148.7	≈8	≈4.7	av E β =3.82×10 ³ 15
				$I\beta^{-}: 8 \ 2 \ in \ 2011 Li50.$
$(9.2 \times 10^{3\#} 3)$	186.4	<3	>5.3	av E β =4.29×10 ³ 15
$(9.4 \times 10^3 \ 3)$	0.0	≈92	≈3.9	av $E\beta = 4.38 \times 10^3 \ 15$
				$I\beta^{-}$: 92 2 in 2011Li50.

[†] Deduced by 2011Li50 from observed γ -ray intensities, absolute efficiency of SeGA array, β -detection efficiency and number of ions detected.

[±] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

$\gamma(^{64}Mn)$

E_{γ}^{\dagger}	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Comments
186.4 3	≈11	186.4	(2^+)	0.0 1 ⁽⁺⁾	I_{γ} : ≈ 11 if no other γ transitions from the 186.4 and 1148.7 levels. Other:
					$E\gamma = 189 \ I$, $I\gamma = 17\%$ of the β strength (2002MaZN).
962.3 2	≈ 8	1148.7	(1^{+})	186.4 (2+)	I_{γ} : ≈ 8 from $I\beta^{-}$ if no other transition from this level.

Continued on next page (footnotes at end of table)

 64 Cr β^- decay (42.9 ms) 2011Li50,2005Ga01,2003So21 (continued)

 $\gamma(^{64}Mn)$ (continued)

[†] From 2011Li50. [‡] Absolute intensity per 100 decays.

64 Cr β^- decay (42.9 ms) 2011Li50,2005Ga01,2003So21

3