Adopted Levels, Gammas

	His	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 178, 41 (2021).	12-Nov-2021

 $Q(\beta^{-})=11981\ 6$; $S(n)=4173\ 5$; $S(p)=14100\ 70$; $Q(\alpha)=-1.233\times10^{4}\ 18$ 2021Wa16 $Q(\beta^{-}n)=4575\ 6$, $S(2n)=10608\ 7$, $S(2p)=32350\ 260\ (2021Wa16)$.

1985Gu14: ⁶⁴Mn formed in fragmentation of ⁸⁶Kr beam at 33 MeV/nucleon with Ti and Ta targets, identification by time-of-flight method using ΔE-E detectors at GANIL.

1994Se12 and 1990Tu01: Th(p,F) E=800 MeV reaction followed by time-of-flight detection of fission fragments to identify ⁶⁴Mn and measured its mass using Time-of-Flight Isochronous (TOFI) spectrometer at the Los Alamos Meson Physics Facility (LAMPF).
 1998Am04: ⁶⁴Mn formed in fragmentation of ⁸⁶Kr beam, fragment mass separator. Measured T_{1/2} at GSI.

1998Gr14: ⁶⁴Mn formed in fragmentation of ⁸⁶Kr beam at 60.3 MeV/nucleon with Ni target. Measured E γ , I γ , γ (t), (fragment) γ coin, T_{1/2} at GANIL.

2002MaZN (thesis): ⁶⁴Mn obtained from fragmentation of ⁸⁶Kr beam at 57.8 MeV/nucleon with a ⁹Be target, LISE2000 spectrometer at GANIL facility. Measured half-life from timing of β measurement.

2011Da08: ⁶⁴Mn produced in the fragmentation of 57.8 MeV/nucleon ⁸⁶Kr beam impinged on 50 mg/cm² thick tantalum target using LISE-2000 spectrometer at GANIL facility. Detector system included a three-element Si-detector telescope containing a double-sided silicon-strip detector (DSSSD) backed by a Si(Li) detector and surrounded by four clover type EXOGAM Ge detectors. Product identified by mass, atomic number, charge, energy loss and time of flight. Measured half-life.
2012Na15: measured precise mass excess using RILIS facility and ISOLTRAP mass spectrometer at CERN facility.

- 2015He28: measurement of spin, static magnetic dipole moment and electric quadrupole moment of the g.s. ⁶⁴Mn beam produced in U(p,X) reaction at E(p)=1.4 GeV at CERN-ISOLDE facility using a RILIS ion source. Measured hyperfine structure using collinear laser spectroscopy (COLLAPS) technique. Deduced hyperfine constants for $3d^54s^2 \ 6S_{5/2} \ -> 3d^54s4p \ 6P_{3/2}$ ground state atomic transition with wave number=35689.980 cm⁻¹, spin, magnetic dipole moment and electric quadrupole moment of the ground state of ⁶⁴Mn. The magnetic dipole moment of ⁵⁵Mn, μ =+3.46871790 *9* was used as a standard reference for the other Mn isotopes. (Note: 2015He28 quote μ =+3.4687179 *9* for ⁵⁵Mn in their Table I). Comparison with large-scale shell-model calculations using GXPF1A and LNPS effective interactions, and with previous experimental results. The spin and moments for the (4⁺) isomer in ⁶⁴Mn could not be measured in 2015He28 because of its short half-life of 0.44 ms.
- 2016He14: E=1.4 GeV proton beam was produced from the ISOLDE facility at CERN. Target was a thick uranium carbide. Recoiling ions were ionized using the resonance ionization laser ion source (RILIS), mass-separated, cooled and bunched in the gas-filled RFQ ISCOOL, re-accelerated and guided to the laser spectroscopy beam line COLLAPS. Measured hyperfine spectra using collinear laser spectroscopy on atomic and ionic transitions, respectively. Deduced changes in mean-square charge radii relative to ⁵⁵Mn. Comparisons with theoretical calculations. Systematics of neighboring nuclei.

Theory references for structure and other topics: four primary references in the NSR database at www.nndc.bnl.gov. Additional information 1.

⁶⁴Mn Levels

Cross Reference (XREF) Flags

A 64 Cr β^{-} decay (42.9 ms)

B 64 Mn IT decay (440 ms)

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0.0	1(+)	90 ms 4	AB	eq:sphere:sph

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁶⁴Mn Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
				(2000HaZL, from β and n measurements). J^{π} : spin from hyperfine structure, collinear laser spectroscopy (2015He28), parity from possible allowed β feeding from 0 ⁺ parent. $T_{1/2}$: weighted average of 90 ms 9 (2011Da08, also 2002MaZN, fitting of the implant- β correlated decay curve, including background rate, and half-lives of mother, daughter and grand-daughter activities, at GANIL); 91 ms 4 (2005GaZR, β -fragment correlation, at GANIL); 89 ms 4 (1999Ha05, β -fragment correlation at ISOLDE-CERN, also 2000HaZL). Others: 85 ms 5 (1999So20, β -fragment correlations, also 1999Le67, earlier conference reports from GANIL); 140 ms 30 (1998Am04, β -implant correlated decay curve at GSI, earlier value was 170 ms 20 in 1995AmZY). The value from 1998Am04 agrees within 1.5 σ , but is much less precise, and it does not affect the adopted half-life. μ ,Q: from hyperfine structure using collinear laser spectroscopy technique (2015He28,
40.2.3	(2^{-})		R	see also 2015He10 and 201/Ne04). I^{π_1} see comment for 175 level
175.5 4	(2^{+})	440 ms <i>49</i>	B	%IT=100
				J ^{π} : (M2)-(E1) cascade to 1 ⁽⁺⁾ . T _{1/2} : weighted average of 400 μ s 40 (2011Li50, decay curves for γ rays); 0.50 ms 5 (2005GaZR, γ (t)). Other: >100 μ s (1998Gr14).
186.4 <i>3</i>	(2^{+})		Α	J^{π} : γ to 0^+ ; γ from (1 ⁺); no β^- feeding from 0^+ parent.
1148.7 <i>4</i>	(1^+)		A	J^{π} : possible allowed β feeding from 0 ⁺ .
[†] From 1	Eγ data.			
				γ (⁶⁴ Mn)

E _i (level)	\mathbf{J}_i^{π}	Eγ	Iγ	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	α^{\ddagger}	Comments
40.2	(2 ⁻)	40.2 3	100	0.0	$1^{(+)}$	(E1)	0.6 4	E_{γ} : from ⁶⁴ Mn IT decay.
175.5	(4 ⁺)	135.3 <i>3</i>	100	40.2	(2^{-})	(M2)	0.11 3	$B(M2)(W.u.) = 8.8 \times 10^{-5} + 11 - 9$
								E_{γ} : from ⁶⁴ Mn IT decay.
186.4	(2^{+})	186.4 <i>3</i>	100	0.0	$1^{(+)}$			E_{γ} : from ⁶⁴ Cr β^- decay.
1148.7	(1^{+})	962.3 2	100	186.4	(2^{+})			E_{γ} : from ⁶⁴ Cr β^- decay.

[†] From ce data and intensity balance in ⁶⁴Mn IT decay.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

