$^{12}C(^{54}Fe,2n\gamma),^{54}Fe(^{12}C,2n\gamma)$ **1991En01**

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Balraj Singh and Jun Chen	NDS 178, 41 (2021).	12-Nov-2021			

Includes ¹²C(⁶⁵Ge,⁶⁴Ge) from 2007St16.

1991En01 (also 1990Li25,1992En03,1995Ge07): ¹²C(⁵⁴Fe,2nγ), E(⁵⁴Fe)=165 MeV and ⁵⁴Fe(¹²C,2nγ),E(¹²C)=37 MeV. Measured Eγ, Iγ, recoil-γ(θ), recoil-γ- and recoil-γγ-coin using array of 19 Compton suppressed Ge detectors and a recoil-separator. Cross section for ⁶⁴Ge production=640 μb 70 (≈0.1% of total fusion cross section). Total routhian surface calculations based on Woods-Saxon cranking model with pairing. Isospin impurity deduced from interband transitions.
2007St16: ¹²C(⁶⁵Ge,⁶⁴Ge). The ⁶⁵Ge beam produced as a cocktail beam of ⁶⁴Ga, ⁶³Zn and ⁶²Cu in the fragmentation of 150

MeV/nucleon ⁷⁸Kr beam. Lifetimes were measured using the recoil distance method (RDDS). Particles were separated with the S800 spectrograph at the NSCL-MSU facility. The γ rays were measured using the SeGA array of one ring of seven Ge detectors positioned at 30°, and another of eight detectors at 140°. Deduced B(E2) values, and compared with large-scale shell-model calculations.

Additional information 1.

1987Go02: ²⁷Al(⁴⁰Ca,p2n),E(⁴⁰Ca)=102 MeV. Measured E γ , n γ - and particle- $\gamma\gamma$ coin. Identification of five γ rays in ⁶⁴Ge based on signature of 0α -1p-xn coin (x=1,2), knowledge of pn γ channel and consistency of σ (2pn)/ σ (p2n) with the observed γ -ray intensities.

1986Oo01: ${}^{12}C({}^{54}Fe,2n\gamma),E({}^{54}Fe)=150$ MeV. Measured E γ , I γ , $\gamma\gamma$ - and n γ -coin. Identification and intensity of 902 γ based on xn-yp- γ coin data (x=1,2; y=0,1). Only one γ ray (from the first 2⁺) assigned to ${}^{64}Ge$.

Others: 1979SuZY, 1980DeYK: 64 Zn(3 He,p2n γ),E(3 He)=35, 44 MeV; and 54 Fe(12 C,2n γ). Measured n γ - and n- $\gamma\gamma$ -coin with tof method. No positive identification of γ rays in 64 Ge.

1991En01 conclude that the low spin states show complete triaxial instability and modest quadrupole deformation. Permanent octupole deformation in the ground state is not supported by their data. Isospin mixing is indicated through the observation of forbidden (for T=0) E1 transitions.

⁶⁴Ge Levels

E(level) [†]	Jπ‡	T _{1/2}	Comments
0.0#	0^{+}		
901.7 [#] 3	(2^{+})	2.29 ps 35	$T_{1/2}$: from recoil-distance method (2007St16).
1578.7 <mark>&</mark> 3	(2^{+})	5.5 ps +28-14	$T_{1/2}$: from recoil-distance method (2007St16).
2052.6 [#] 4	(4^{+})		
2154.8 ^{&} 4	(4^{+})		
2669.6 5	(3+)		J^{π} : (4 ⁺) in Adopted Levels.
2969.7 [@] 5	(3-)		
3406.7 <mark>&</mark> 5	(6 ⁺)		
3465.6 [#] 6	(6^{+})		
3716.9 7	(5 ⁺)		E(level): this level is not confirmed in 2003Fa01, 1047 γ is placed from the 3717, (5 ⁻) level. Thus this level is omitted in Adopted Levels.
3717.3 [@] 5	(5 ⁻)		T _{1/2} : <0.21 ns (estimate by 1991En01 from nonobservation of expected intensity imbalance at 5 [−] level if τ (mean)≈300 ps).
4245.7 [@] 6	(7^{-})		
5025.5 8	(7+)		J^{π} : no assignment given in Adopted Levels.
5175.2 ^{&} 7	(8 ⁺)		
5180.0 [#] 8	(8 ⁺)		
5372.9 [@] 7	(9 ⁻)		
6065.5 9			E(level): this level is not confirmed in $2003Fa01$, 1820γ is placed from a 8427 level, instead.
6564.4 [@] 8	(11 ⁻)		
8006.8 [@] 10	(13 ⁻)		
	. ,		

Continued on next page (footnotes at end of table)

$^{12}C(^{54}Fe,2n\gamma),^{54}Fe(^{12}C,2n\gamma)$ **1991En01** (continued)

⁶⁴Ge Levels (continued)

[†] From a least-squares fit to $E\gamma$ data.

[‡] From 1991En01, based on band assignment and A₂ values in $\gamma(\theta)$ data. Differences in assignments in Adopted Levels are pointed out.

Band(A): g.s. band.

[@] Band(B): (3⁻) band. The 3⁻ level is probably an octupole vibrational state but its collectivity is not established (1991En01). The higher states in this sequence may arise from weak coupling of quasiparticles to the g.s.

 $\gamma(^{64}\text{Ge})$

[&] Band(C): Band based on (2^+) .

E_{γ}^{\dagger}	I_{ν}^{\dagger}	E _i (level)	Jπ	Ef	J_c^{π}	Mult.	Comments
7	7	1(1	J	f		
528.4 <i>3</i>	15.1 7	4245.7	(7 ⁻)	3717.3	(5 ⁻)	(Q) #	A ₂ =+0.14 5
^x 537.4 3	1.6 <i>1</i>						
576.2 3	20.9 10	2154.8	(4^{+})	1578.7	(2^{+})		$A_2 = +0.08 \ 9$
677.0 <i>3</i>	31.3 14	1578.7	(2^{+})	901.7	(2^{+})	(M1+E2) [@]	$A_2 = -0.08 \ 4$
							B(E2)=0.062 21 (2007St16), assuming pure E2.
^x 736.0 [‡] 3	1.8 <i>I</i>						
747.5 <i>3</i>	2.2 2	3717.3	(5^{-})	2969.7	(3 ⁻)		
901.5 <i>3</i>	100	901.7	(2^{+})	0.0	0^{+}		$A_2 = +0.095$
							B(E2)↓=0.041 6 (2007St16)
							$\gamma(\theta)$ is degraded from that expected for $\Delta J=2$, Q
							(1991En01).
^x 969.5 [‡] 4	1.8 2						
1047.3 4	3.7 2	3716.9	(5^+)	2669.6	(3+)		
1090.9 4	8.0 4	2669.6	(3^{+})	1578.7	(2^{+})	$D^{@}$	E_{γ} : 1090.0 in table 3 (1991En01) seems to be a
							misprint. E γ =1090.9 in figure 11 and 1091 in
							figures 9 and 10 of 1991En01.
							Mult.: A ₂ = -0.09 5 suggests $\Delta J=1$, but it is
							inconsistent with adopted ΔJ^{π} .
1127.2 4	10.1 8	5372.9	(9 ⁻)	4245.7	(7^{-})		
1150.8 4	47.2 23	2052.6	(4^{+})	901.7	(2^{+})	(Q) #	$A_2 = +0.225$
1191.5 4	4.4 <i>3</i>	6564.4	(11^{-})	5372.9	(9 ⁻)		
^x 1216.3 4	1.8 2						
1252.1 4	9.6 5	3406.7	(6^{+})	2154.8	(4^{+})		
^x 1266.8 4	1.5 <i>I</i>						
1308.5 5	1.9 6	5025.5	(7^+)	3716.9	(5^+)		E_{γ} : 1308.6 in figure 11 (1991En01).
1353.7 5	5.1 3	3406.7	(6 ⁺)	2052.6	(4 ⁺)	#	
1413.0 4	12.5 7	3465.6	(6^{+})	2052.6	(4^{+})	(Q) #	A ₂ =+0.24 5
1442.4 5	2.3 2	8006.8	(13^{-})	6564.4	(11^{-})		
*1539.3 5	0.9 1	1570 7	(2+)	0.0	0+		
15/9.0 4	5.0 3	15/8./	(2^{+})	0.0	0'	[E2]	$B(E2)\downarrow=0.00015.5(200/St16)$
1664.8 <i>4</i>	22.1 12	3717.3	(5 ⁻)	2052.6	(4^{+})	D+Q [@]	$A_2 = -0.065$
							A ₂ gives $\delta(Q/D) = -0.09 + 5 - 3$ (1991En01).
							$B(E1)(W.u.)=2.4\times10^{-6}$ (from erratum for 1991En01)
							assuming B(E2)(W.u.)(5 ⁻ to 3^-)=0.4 as for a similar
							state in 00 Ge. This value of B(E1)(W.u.) is
							considered (by 1991En01) to indicate isospin
							impurity $(1_{1/2}=1 \text{ component in the otherwise})$
1714 4 5	271	5180.0	(\mathbf{Q}^+)	2165 6	(6^{+})		$1_{1/2}=0$ nucleus) of $\approx 1.2\%$ in the 5 and 4 ⁺ states.
1/14.4 J 1768 5 5	5.14 611	5175.2	$\binom{0}{(8^+)}$	3405.0	(0)		
1819.8.6	173	6065 5	(0)	4245 7	(0^{-})		
1017.0 0	1.7 3	0005.5		+243.7	(\prime)		

Continued on next page (footnotes at end of table)

$^{12}C(^{54}Fe,2n\gamma),^{54}Fe(^{12}C,2n\gamma)$ **1991En01** (continued)

$\gamma(^{64}\text{Ge})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.	Comments
^x 1966.9 [‡] 5 2067.8 5 ^x 2530.0 10	2.5 2 4.9 <i>4</i> 1.6 <i>3</i>	2969.7	(3 ⁻)	901.7 (2 ⁺)		
$x^{2702.18}$	2.1 2 ≤0.24	2969.7	(3-)	0.0 0+	[E3]	I_{γ} : from %BR≤5 (1991En01). Transition not observed.

[†] From 1991En01. [‡] Seen in coincidence with 901.5 γ but it is not placed (1991En01).

* Seen in concretence with 901.57 but it is not placed (1991En01). * Positive A₂ in $\gamma(\theta)$ consistent with $\Delta J=2$, quadrupole. @ Negative A₂ in $\gamma(\theta)$ consistent with $\Delta J=1$, dipole or dipole+quadrupole. & Placement of transition in the level scheme is uncertain. * γ ray not placed in level scheme.

$\frac{{}^{12}{\rm C}({}^{54}{\rm Fe},2{\rm n}\gamma),{}^{54}{\rm Fe}({}^{12}{\rm C},2{\rm n}\gamma) \qquad 1991{\rm En}01}{}$

⁶⁴₃₂Ge₃₂