| History         |                           |                     |                        |  |  |  |  |
|-----------------|---------------------------|---------------------|------------------------|--|--|--|--|
| Туре            | Author                    | Citation            | Literature Cutoff Date |  |  |  |  |
| Full Evaluation | Balraj Singh and Jun Chen | NDS 178, 41 (2021). | 12-Nov-2021            |  |  |  |  |

Parent: <sup>64</sup>Ge: E=0.0;  $J^{\pi}=0^+$ ;  $T_{1/2}=63.7$  s 25;  $Q(\varepsilon)=4517$  4;  $\%\varepsilon+\%\beta^+$  decay=100.0

 $^{64}$ Ge-T<sub>1/2</sub>: From  $^{64}$ Ge Adopted Levels.

 $^{64}$ Ge-Q( $\varepsilon$ ): From 2021Wa16.

1974Ro16 (also 1972Ro13): <sup>64</sup>Ge from <sup>64</sup>Zn(<sup>3</sup>He,3n),E=50 MeV and chemical separation. Measured E $\gamma$ , I $\gamma$  and T<sub>1/2</sub> of <sup>64</sup>Ge. Others:

1993Wi03: measured summed spectra.

1973Da01: source from <sup>54</sup>Fe(<sup>12</sup>C,2n),E=36 MeV. Measured  $\gamma$ ,  $\gamma\beta$ + coin, T<sub>1/2</sub> of <sup>64</sup>Ge. Only one  $\gamma$  ray at 426.9 3 reported. 1972De09, 1972Cr02: search for <sup>64</sup>Ge isotope using <sup>64</sup>Zn(<sup>3</sup>He,3n) reaction not successful.

#### <sup>64</sup>Ga Levels

| E(level) <sup>†</sup> | J <b>π</b> ‡ | Comments                                                                                                                   |
|-----------------------|--------------|----------------------------------------------------------------------------------------------------------------------------|
| 0.0                   | $0^{+}$      |                                                                                                                            |
| 42.89 10              | $(2^{+})$    |                                                                                                                            |
| 128.19 <i>13</i>      | $1^{+}$      |                                                                                                                            |
| 171.1? 2              | $(3^{+})$    | Direct population of this level is not expected if J=3.                                                                    |
| 427.00 22             | $1^{+}$      |                                                                                                                            |
| 667.1 <i>3</i>        | $1^{+}$      |                                                                                                                            |
| 817.4? 4              | $(1^{+})$    | Suggested level population (evaluators) on the basis of an 818 level reported in $(p,n\gamma)$ and $({}^{3}\text{He},t)$ . |

<sup>†</sup> From a least-squares fit to  $\gamma$ -ray energies.

<sup>‡</sup> From the Adopted Levels.

#### $\varepsilon, \beta^+$ radiations

 $(427\gamma)\beta^+$  coin study (1973Da01) gives  $E(\beta^+)=2960\ 250$  implying  $Q(\varepsilon)=4410\ 250$ .

| E(decay)                | E(level) | $I\beta^+$ | $I\varepsilon^{\ddagger}$ | $\log ft^{\dagger}$ | $I(\varepsilon + \beta^+)^{\dagger \ddagger}$ | Comments                                                                                                                                                                                                                      |
|-------------------------|----------|------------|---------------------------|---------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (3700 <sup>#</sup> 4)   | 817.4?   | ≈6.7       | ≈0.27                     | ≈5.2                | ≈7.0                                          | av E $\beta$ =1199.8 <i>19</i> ; $\varepsilon$ K=0.03437 <i>15</i> ; $\varepsilon$ L=0.003816 <i>17</i> ; $\varepsilon$ M+=0.000692 3                                                                                         |
| (3850 4)                | 667.1    | ≈16        | ≈0.56                     | ≈4.9                | ≈17                                           | av $E\beta = 1270.8 \ 19$ ; $\varepsilon K = 0.02931 \ 13$ ; $\varepsilon L = 0.003255 \ 14$ ;<br>$\varepsilon M + = 0.0005904 \ 2$                                                                                           |
| 3.98×10 <sup>3</sup> 25 | 427.00   | ≈41        | ≈1.1                      | ≈4.6                | ≈42                                           | av $E\beta$ =1384.5 <i>19</i> ; $\varepsilon K$ =0.02310 <i>9</i> ; $\varepsilon L$ =0.002564 <i>10</i> ;<br>$\varepsilon M$ +=0.0004651 <i>1</i><br>E(decay): E( $\beta^+$ )=2960 250 from (427 $\gamma$ )( $\beta^+$ ) coin |
|                         |          |            |                           |                     |                                               | (1973Da01).                                                                                                                                                                                                                   |
| (4389 4)                | 128.19   | ≈18        | ≈0.36                     | ≈5.2                | ≈18                                           | av Eβ=1526.8 20; εK=0.01759 7; εL=0.001952 7;<br>εM+=0.0003540 1                                                                                                                                                              |
| (4517 <sup>#</sup> 4)   | 0.0      | <1.3       | < 0.023                   | >6.4                | <1.3                                          | av Eβ=1588.1 20; εK=0.01576 6; εL=0.001749 6;<br>εM+=0.0003172 1                                                                                                                                                              |

<sup>†</sup> Values should be considered as limits only since there is a large gap of about 3.7 MeV between  $Q(\varepsilon)$  value and highest known level at 817 keV. Evaluators consider the decay scheme as incomplete.

<sup>‡</sup> Absolute intensity per 100 decays.

<sup>#</sup> Existence of this branch is questionable.

### <sup>64</sup>Ge ε decay (63.7 s) 1974Ro16 (continued)

# $\gamma(^{64}\text{Ga})$

I $\gamma$  normalization: As given by 1974Ro16 from growth of <sup>64</sup>Ga activity and the present decay scheme.  $\varepsilon_{\cdot}\beta^{+}$  feeding to g.s. is <1.3% (assuming log *ft*>6.4 for a possible isospin forbidden transition). According to 1974Ro16 only 85% 10 of the activity is accountable to <sup>64</sup>Ge in the decay chain.

| $E_{\gamma}$          | $I_{\gamma}^{\dagger}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_{f}$ | $\mathbf{J}_f^{\pi}$ | Mult.   | $\alpha^{\ddagger}$   | $I_{(\gamma+ce)}^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------|------------------------|------------------------|----------------------|------------------|----------------------|---------|-----------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (42.89 10)            | 0.7 3                  | 42.89                  | (2 <sup>+</sup> )    | 0.0 0            | )+                   | (E2)    | 16.36                 | 12 5                        | $\alpha(K)=13.38 \ 19; \ \alpha(L)=2.60$ 4; $\alpha(M)=0.371 \ 6;$<br>$\alpha(N)=0.01080 \ 16$<br>$E_{\gamma}: \ \gamma \text{ not reported in } ^{64}Ge$<br>$\varepsilon \text{ decay, taken from the Adopted Gammas.}$<br>$I_{(\gamma+ce)}: \text{ from intensity balance.}$<br>Mult.: from the Adopted Gammas                                                                                                       |
| (85.29 14)            | ≈3.9                   | 128.19                 | 1+                   | 42.89 (          | 2+)                  | [M1+E2] | 0.68 58               |                             | $\alpha(K)=0.59$ 50; $\alpha(L)=0.076$<br>67; $\alpha(M)=0.0110$ 96;<br>$\alpha(N)=4.6\times10^{-4}$ 38<br>$E_{\gamma},I_{\gamma}: \gamma$ not resolved from<br>Pb K x ray in <sup>64</sup> Ge $\varepsilon$<br>decay. Energy and<br>intensity (based on<br>branching ratio) from the<br>Adopted Gammas.                                                                                                               |
| 128.2 <sup>#</sup> 2  | 10.7 <sup>#</sup> 7    | 128.19                 | 1+                   | 0.0 0            | )+                   | [M1]    | 0.0359                |                             | $\alpha$ (K)=0.0320 5;<br>$\alpha$ (L)=0.00337 5;<br>$\alpha$ (M)=0.000493 8<br>$\alpha$ (N)=2.62×10 <sup>-5</sup> 4                                                                                                                                                                                                                                                                                                   |
| 128.2 <sup>#@</sup> 2 | #                      | 171.1?                 | (3 <sup>+</sup> )    | 42.89 (          | (2+)                 | [M1+E2] | 0.16 <i>12</i>        |                             | $\begin{aligned} &\alpha(\mathbf{K}) = 0.14 \ II; \ \alpha(\mathbf{L}) = 0.016 \\ &I3 \ \alpha(\mathbf{M}) = 0.0023 \ I9; \\ &\alpha(\mathbf{N}) = 1.06 \times 10^{-4} \ 80 \\ & \mathbf{E}_{\gamma}, \mathbf{I}_{\gamma}: \ \gamma \text{ mainly associated} \\ & \text{with } 128.2 \text{ level; only a} \\ & \text{small fraction may belong} \\ & \text{with the decay of } 171 \\ & \text{level.} \end{aligned}$ |
| 384.1 <i>3</i>        | 4.7 5                  | 427.00                 | 1+                   | 42.89 (          | (2+)                 | [M1+E2] | 0.0037 14             |                             | $\alpha(K)=0.0033 \ 13;$<br>$\alpha(L)=3.4\times10^{-4} \ 14;$<br>$\alpha(M)=5.0\times10^{-5} \ 20;$<br>$\alpha(N)=2 \ 62\times10^{-6} \ 97$                                                                                                                                                                                                                                                                           |
| 427.0 3               | 37.4 10                | 427.00                 | 1+                   | 0.0 0            | )+                   | [M1]    | 0.00179               |                             | $\alpha(K) = 0.001599 \ 23;$<br>$\alpha(L) = 0.0001633 \ 23;$<br>$\alpha(M) = 2.39 \times 10^{-5} \ 4;$<br>$\alpha(N) = 1.291 \times 10^{-6} \ 19$                                                                                                                                                                                                                                                                     |
| 667.1 <i>3</i>        | 16.9 <i>10</i>         | 667.1                  | 1+                   | 0.0 0            | )+                   | [M1]    | 6.55×10 <sup>-4</sup> |                             | $\alpha(K)=0.000586 \ 9;$<br>$\alpha(L)=5.94\times10^{-5} \ 9;$<br>$\alpha(M)=8.69\times10^{-6} \ 13;$<br>$\alpha(N)=4.71\times10^{-7} \ 7$                                                                                                                                                                                                                                                                            |
| 774.5 <sup>@</sup> 3  | 7.0 6                  | 817.4?                 | (1 <sup>+</sup> )    | 42.89 (          | (2+)                 | [M1+E2] | 0.00054 7             |                             | $\alpha(K)=0.00049 7; \alpha(L)=5.0\times10^{-5} 7; \alpha(M)=7.2\times10^{-6} 10; \alpha(N)=3.9\times10^{-7} 5$                                                                                                                                                                                                                                                                                                       |

Continued on next page (footnotes at end of table)

## <sup>64</sup>Ge ε decay (63.7 s) 1974Ro16 (continued)

## $\gamma(^{64}\text{Ga})$ (continued)

<sup>†</sup> For absolute intensity per 100 decays, multiply by 1.0 2.

- <sup>‡</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation
- based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- <sup>#</sup> Multiply placed with intensity suitably divided.

<sup>@</sup> Placement of transition in the level scheme is uncertain.

# <sup>64</sup>Ge ε decay (63.7 s) 1974Ro16

#### Decay Scheme



64 31 Ga<sub>33</sub>