65 Mn β^- n decay (91.8 ms) 2013Ol06

	His	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 178, 41 (2021).	12-Nov-2021

Parent: ⁶⁵Mn: E=0; $T_{1/2}$ =91.8 ms 9; Q(β -n)=5931 6; $\%\beta$ -n decay=7.9 12

⁶⁵Mn-T_{1/2}: From weighted average of 91.9 ms 9 (2013Ol06, β(363.7γ)-coin, authors also report 92.0 ms 13 from analysis of five other γ rays from the decay of ⁶⁵Mn); 84 ms 8 (2011Da08, also 2002MaZN, βγ-coin); 92 ms 1 (2003So21, also 2005GaZR, ion-β, earlier value was 100 ms 8 in 1999So20 and 1999Le67); 88 ms 4 (1999Ha05, also 2000HaZL, βn-coin). Others: 85 ms +10-9 (2005NiZZ, βγ-coin, preliminary result); 110 ms 20 (1998Am04, ion-β). Weighted average is the same if all the available values are used.

 65 Mn-Q(β^{-} n): From 2021Wa16.

⁶⁵Mn-%β⁻n decay: %β⁻n=7.9 *12* for the decay of ⁶⁵Mn (2013Ol06, from γ-intensities in the daughter nucleus, normalized to the observed total observed γ-ray intensity from the decay of ⁶⁵Mn, and the absolute intensity of the 1345.1-keV γ ray in ⁶⁴Ni from ⁶⁴Fe → ⁶⁴Co → ⁶⁴Ni decay). Other: %β⁻n=21.0 5 from 2000HaZL (preliminary result and interpreted as feeding the g.s. of ⁶⁴Fe) is in severe disagreement with result from 2013Ol06 which is based on more comprehensive and complete analysis of the decay of ⁶⁵Mn.

2013Ol06: measured half-life of 65 Mn, β -delayed neutron emission probability from the intensities of the γ rays in the daughter nucleus. Experiments carried out at ISOLDE-CERN.

2011Da08 (also 2002MaZN); 2005NiZZ; 2003So21 (also 2005GaZR, 1999So20, 1999Le67); 1999Ha05 (also 2000HaZL): measured half-life of ⁶⁵Mn decay.

2000HaZL: measured delayed neutron spectrum, deduced $\%\beta^{-}n$.

⁶⁴Fe Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\ddagger}$
0.0	0^{+}	2.0 s 3
746.4 <i>1</i>	2+	6.8 ps 7
1763.8 <i>3</i>	4+	<1.25 ps
1852.2 5	$(1,2^{+})$	
2117.1 5	$(1,2^{+})$	

[†] From $E\gamma$ data.

[‡] From Adopted Levels.

$\gamma(^{64}\text{Fe})$

I γ normalization: From 2013Ol06.

2013Ol06 state "There are a few high-energy transitions for which no coincidences were observed. They are assigned to ⁶⁵Fe, although there is a minor possibility that they belong ⁶⁴Fe. Without a detailed ⁶⁴Fe level scheme, this possibility cannot be completely excluded". Above 1 MeV, in Table I of 2013Ol06, there is one unplaced γ and 13 γ rays which are shown as single γ rays from levels feeding the ground state of ⁶⁵Mn, with a total relative intensity of 2.9 4 units. It is possible that some of this intensity is connected with the β -n decay of ⁶⁵Mn.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	Comments
746.4 <i>1</i> 1017.4 <i>3</i> 1105.8 <i>5</i> 1370.7 <i>5</i>	4.4 2 0.4 1 0.5 1 0.2 1	746.4 1763.8 1852.2 2117.1	$ \begin{array}{r} 2^+ \\ 4^+ \\ (1,2^+) \\ (1,2^+) \end{array} $	$\begin{array}{c ccc} 0.0 & 0^+ \\ 746.4 & 2^+ \\ 746.4 & 2^+ \\ 746.4 & 2^+ \end{array}$	E2 E2	Absolute intensity (per 100 decays of 65 Mn)=2.4 <i>l</i> (2013Ol06).

[†] From 2013O106. Intensities are relative to 100 for 363.7-keV γ ray in ⁶⁵Fe from ⁶⁵Mn β^- decay.

Continued on next page (footnotes at end of table)

$^{65}\mathrm{Mn}\,\beta^-\mathrm{n}$ decay (91.8 ms) 2013Ol06 (continued)

$\gamma(^{64}\text{Fe})$ (continued)

[‡] From the Adopted Gammas.
[#] For absolute intensity per 100 decays, multiply by 0.539 *19*.

Delayed Neutrons (⁶⁴Fe)

$I(n)^{\dagger}$	Comments
5.4 12	I(n): from 2013Ol06, from 7.9 12-(2.5 2, summed neutron feedings to excited states).
1.8 2	
0.22 5	
0.27 5	
0.11 5	
	$ I(n)^{\dagger} 5.4 12 1.8 2 0.22 5 0.27 5 0.11 5 $

[†] Values are per 100 decays of ⁶⁵Mn decay.

65 Mn β^- n decay (91.8 ms) 20130106

Decay Scheme

Intensities: I_{γ} per 100 parent decays

Legend

	$I_{\gamma} < 2\% \times I_{\gamma}^{max}$
	$I_{\gamma} < 10\% \times I_{\gamma}^{max}$
	$I_{\gamma} > 10\% \times I_{\gamma}^{max}$
•	Coincidence

