				History			
	Туре	Auth	nor		Citation	_ !	Literature Cutoff Date
	Full Evaluation	Balraj Singh a	nd Jun	Chen NI	DS 178, 41 (2021).	12-Nov-2021
Q(β ⁻)=579.6 6; S(n)=7 Q(ε)=1674.62 21, S(2n) Mass measurement: 200 See 63 Cu(n,γ):resonanc 65 Cu(3 He,α) E=32 MeV Additional information 63 Cu(n,n) E=res: 19660 63 Cu(α, 3 He): 1961Sa09	915.868 24; S(p)=)=18779.5 5, S(2p) 05Gu36. es dataset for energ V: 1972Ch08 (also 1. Go38 (28 resonance 0: E=43 MeV, one	7200.498 28; Q)=18578 19 (20) gies and parame 1971ChXT,196 es from 2.63-42 excited state inc	(α)=-(21Wa1 ters of 8Po03 .2 keV dicated	6198.9 <i>4</i> 6). ⁵ about 270 1): Measured ⁷). I at ≈1 MeV	2021Wa16 neutron resonance $\sigma(\theta)$ of recoil m	es fro uclei a	m 0.4-152.7 keV. and deduced reaction mechanism.
				⁶⁴ Cu Leve	els		
		(Cross F	Reference (X	REF) Flags		
$\frac{\mathrm{E(level)}^{\dagger}}{0.0} \frac{\mathrm{J}^{\pi \&}}{\mathrm{1}^{+}} \frac{1}{12}$	A ${}^{61}\text{Ni}(\alpha, p)$ B ${}^{59}\text{Co}({}^{7}\text{Li}, p)$ C ${}^{61}\text{Ni}(\alpha, p\gamma)$ D ${}^{62}\text{Ni}({}^{3}\text{He}, p)$ E ${}^{62}\text{Ni}(\alpha, d)$ G ${}^{63}\text{Cu}(n, \gamma), ($ H ${}^{63}\text{Cu}(n, \gamma)$ H I ${}^{63}\text{Cu}(n, \gamma)$ H T ${}^{1/2}$ 2.7006 ^{#@} h 20	nγ)) pol n,γ) E=th E=0.579 keV E=2.038 keV XF BCDE GHIJK M	J K L M N O P Q R R R EF	⁶³ Cu(n,γ) E ⁶³ Cu(n,γ) E ⁶³ Cu(n,γ),(1 ⁶³ Cu(d,pγ) ⁶⁴ Ni(p,n) ⁶⁴ Ni(p,nγ) ⁶⁴ Ni(⁶ Li, ⁶ E RSTUVWXYZ	$\delta = 2.642 \text{ keV}$ $\delta = 24 \text{ keV}$ $(z = 24 \text{ keV})$ $(z = 24 k$	S T U V W X Y Z Z 5.3; %2010V2010V2010V2010Vcontrolcon	Coulomb excitation ⁶⁴ Zn(n,p γ) ⁶⁴ Zn(d, ² He) ⁶⁴ Zn(t, ³ He) ⁶⁵ Cu(p,pn γ) ⁶⁵ Cu(d,t) ⁶⁶ Zn(d, α) ⁶⁷ Zn(p, α) Comments ⁶⁶ Zn(3, α) ⁶⁷ Zn(p, α) Comments ⁶⁶ Zn(3, α) ⁶⁷ Zn(p, α) Comments ⁶⁶ Zn(3, α) ⁶⁷ Zn(p, α) Comments ⁶⁷ Zn(p, α) ⁶⁷ Zn(p, α) ⁶⁷ Zn(2) ⁶⁷ Zn

⁶⁴Cu Levels (continued)

E(level) [†]	Jπ &	$T_{1/2}^{\ddagger}$	XREF	Comments
				chambers); 12.718 h 23 (2012Am05, liquid scintillation counting); 12.696 h 12 (2012Lu14, ionization chamber, value also cited in 2012Be24); 12.702 h 8 (2012Be24, measurement made at NPL, Teddington, using an ionization chamber); 12.704 h 5 (2010Wa46, ionization chamber, value also cited in 2012Be24); 12.694 h 28 (2008Fa12, weighted average of 12.675 h 33 at 293 K and 12.708 h 23 at 12K, 511-radiation counting using HPGe detector); 12.700 h 5 (1989Ab22, γ decay, uncertainty of 0.001 h in 1989Ab22 increased by evaluators); 12.701 h 3 (1982RuZV,1980RuZY, ionization chamber, earlier value of 12.701 h 7 in 1972MeZM from the same lab); 12.704 h 6 (1974Ry01, $4\pi\beta$ counter); 12.699 h 2 (1973De56); 12.72 h 1 (1972Em01, weighted average of 12.71 h 1, 12.72 h 2, 12.72 h 4 using NaI(TI) detector and ionization chamber, also 1972WyZZ and 12.78 h 5 in 1957Wr37); 12.701 h 11 (1968He20, average of three measurements: 12.695 h 20, 12.702 h 15, 12.709 h 15, 511-radiation counting). Weighted average of all the values, including the 19 values, with less precision, listed below is 12.702 h 3 with reduced χ^2 =4.7 as compared to critical χ^2 =1.5 at 95% confidence level. With small adjustment in uncertainties of a few of the less precise values, NMR weighted average gives 12.702 h 2, with reduced χ^2 =2.5, and RT weighted average gives 12.701 2 with reduced χ^2 =1.7.
159.282 <i>3</i>	2+	21 ps 4	ABCDE GHIJK MNOPQRST VWXYZ	Additional information 2. XREF: J(?). J^{π} : $\gamma(\theta)$ in (pol n, γ) on polarized ⁶³ Cu; $\gamma(\theta)$ in (p,n γ); L (d t)=1 from $3/2^{-1}$
278.256 8	2+	<9 ps	BCDE GHI K MNOPQR T VWXYZ	J^{π} : $\gamma(\theta)$ in (pol n, γ) on polarized ⁶³ Cu; $\gamma(\theta)$, $\gamma(\text{lin pol})$ in
343.897 9	1+	<4 ps	B G IJK MNOPQr TUv XY	(p,n γ); L(d,t)=1 from 3/2 . XREF: r(356)U(400)v(352)Y(?). J ^{π} : $\gamma(\theta)$, $\gamma(\text{lin pol})$ in (p,n γ); $\gamma(\theta)$ in (pol n, γ) on polarized ⁶³ Cu; L(d,p)=1 from 3/2 ⁻ ; L(³ He,t)=0 and Gamow-Teller
362.230 6	3+	<4 ps	BCDE G IJK MNOPQr T vWXYZ	transition. XREF: r(356)v(352). J^{π} : $\gamma(\theta)$ in (p,n γ); L(d,p)=1+3 from 3/2 ⁻ ; L(³ He,p)=2. However, primary γ from 1 ⁻ in (n, γ) E=2.038 keV is inconsistent with 3 ⁺
574.614 <i>12</i>	(4)+	<17 ps	BCDE G K MNOP T VWXYZ	J^{π} : $\gamma(\theta)$ and $\gamma\gamma(\theta)$ in $(p,n\gamma)$ give J=2,4; L(d, α)=4 and L(³ He,p) from 0 ⁺ gives $(3^+,4^+,5^+)$; parity from L(d,p)=3 from $3/2^-$
608.784 <i>9</i>	2+	<9 ps	B D GHIJK MNOPQR V XY	J ^{π} : spin=2 from $\gamma(\theta)$ in (pol n, γ) on pol ⁶³ Cu and $\gamma(\theta)$, $\gamma(\text{lin pol)}$ in (p,n γ); parity from L(d,p)=1 from 3/2 ⁻ and L(³ He,p)=2 from 0 ⁺ ; L(d,t)=1+3 from 3/2 ⁻ for 573+606 unresolved group.
662.99 <i>3</i>	1+	<8 ps	BD GH KMNOPQ U XY	T _{1/2} : >0.12 ps (DSAM in (p,ny) (19/4Ca14)). XREF: U(730). J ^{π} : spin=1 from $\gamma(\theta)$, $\gamma\gamma(\theta)$ in (p,n γ) and $\gamma(\theta)$ in (pol n, γ) on polarized ⁶³ Cu; parity from L(d,p)=1 from 3/2 ⁻ , L(³ He,t)=0+2 from 0 ⁺ , L(³ He,t)=0 from 0 ⁺ . Other: L(d, α)=4 from 0 ⁺ for a 661 group inconsistent with J=1. T ₁ = >0.12 ps (DSAM in (p ps) (1974Ca14))
739.050 9	2+	<11 ps	B d GHIJK mNoPQr V xyZ	 XREF: d(745)m(742)o(742). E(level): probably a doublet (739+746) in particle-transfer reactions.

E(level) [†]	Jπ&	$T_{1/2}^{\ddagger}$	X	REF		Comments
746.241 <i>11</i> 774.6 <i>5</i> 820.7 <i>5</i>	(3) ⁺ (1) (4)	<13 ps	BCdE GHIJ	mNoP r	WxyZ	$J^{\pi}: \text{spin from } \gamma(\theta) \text{ in (pol } n, \gamma) \text{ on pol}^{63}\text{Cu and } \gamma(\theta)$ in (p,n γ); parity from L(d,p)=1 from 3/2 ⁻ for 739+746. XREF: d(745)m(742)o(742). J ^{π} : $\gamma(\theta)$, $\gamma\gamma(\theta)$ in (p,n γ); L(d,t)=1 from 3/2 ⁻ for the 739+746 doublet; L(³ He,p)=2+4 for a 745 <i>10</i> group; L(d, α)=2(+4) for a 742 <i>4</i> group. A primary γ from 1 ⁻ in (n, γ) E=2.038 keV is inconsistent with 3 ⁺ . J ^{π} : Δ J=2, quadrupole γ to 362, 3 ⁺ level. J ^{π} : Δ J=1, dipole γ to 362, 3 ⁺ level.
878.274 18	(0)+	<15 ps	B D GHI K	MNOP	V XY	XREF: Y(?). J^{π} : $\gamma\gamma(\theta)$ in (p,n γ) strongly supports spin 0. Parity from L(d,p)=1 from 3/2 ⁻ . L(³ He,p)=2 giving (1 ⁺ ,2 ⁺ ,3 ⁺) and primary γ from 2 ⁻ in (n, γ) E=0.579 keV are inconsistent with J=0 assignment.
895.705 <i>19</i>	(3)+	<20 ps	BC E G IJK	MNOP	WXYZ	 J^π: γ(θ) in (p,nγ) and L(d,p)=1+3 from 3/2⁻. However, primary transition from 1⁻ in (n,γ) E=2.038 keV is inconsistent with 3⁺. Cautionary note: 617γ is the only transition from the 895 level seen in all the γ-ray studies where this level is populated, for example, (n,γ) E=Th; (p,nγ); (⁷Li,pnγ); (α,pnγ); and other reactions. The next common transition is 321 keV, seen in several studies but with different intensities, while not reported in (p,nγ). For the other transitions shown here from this level, there are major differences about their observations and intensities, as noted in comments in the γ-ray Table. It is possible there are two or more levels near 895 keV.
927.080 10	1+	<11 ps	B D GHI K	MNOPQR	UV XY	XREF: U(950). J^{π} : $\gamma(\theta)$ in (pol n, γ) on pol ⁶³ Cu; $\gamma(\theta)$, $\gamma\gamma(\theta)$ in (p,n γ) and L(d,p)=1 from 3/2 ⁻ ; L(³ He,t)=L(d, ² He)=0; L(³ He,p)=0+2.
1241.087 <i>13</i>	(2^{+}) $1^{(+)},2^{(+)}$		в d Ghijk n	mNoP	v xy	Probably a doublet (1241+1243) in particle transfer reactions and (n,γ) E=res. J ^{π} : $\gamma(\theta)$ in (pol n, γ) on pol ⁶³ Cu; L(d,p)=1 from 3/2 ⁻ for a 1236 group; L(³ He,p)=0 for a 1241 group gives 0 ⁺ ,1 ⁺ . J ^{π} =3 ⁺ assigned by 2018Sa02 in (⁷ Li,pn γ) without any supporting evidence.
1242.64 7 1287.15 5	$(0,1,2,3^+)^d$ $(1^+,2,3^-)$		Bd Ghijk A GHIKI	mNoP M	v xy x	J^{π} : 1242.56 γ to 1 ⁺ . See also comment for 1241 level. J^{π} : primary γ s from 2 ⁻ and 1 ⁻ in (n, γ) E=0.577, 2.06 keV: γ to 3 ⁺
1287.96 22 1290.7? 3	$(0^+,1,2,3^+)$ (2^+)		В	OP N	V X	J^{π} : 624.7 γ to 1 ⁺ , 1010.0 γ to 2 ⁺ . E(level): may be the same level as 1287.96 or 1287.15.
1298.121 <i>14</i>	(1)+		D GHI	M OPQ	V XY	J^{π} : $\gamma(\theta)$ in (pol n, γ); $L(d,\alpha)=0+2$ from 0^+ ; $L(d,t)=L(d,p)=1$ from $3/2^-$; $L(^{3}He,p)=0$; $L(^{3}He,t)=0$ and Gamow-Teller transition.
1320.335 <i>20</i> 1354.25 <i>3</i>	$(1^+, 2^+, 3^+)$ $(3)^+$		D GIK Bd G Ki	OP MNOPqR	V XY	J ^{π} : L(³ He,p)=2 from 0 ⁺ . J ^{π} : γ to 1 ⁺ (g.s.); L(d,p)=1+3 from 3/2 ⁻ ; L(d, α)=4 from 0 ⁺ ; L(³ He,p)=2 for 1359 group which overlaps 1354 and 1363 levels suggests 1 ⁺ ,2 ⁺ ,3 ⁺ for any of these two levels. J ^{π} =4 ⁺ proposed in (⁷ Li,pn γ) inconsistent with γ to 1 ⁺ .
1363.17 11	(1,2,3 ⁺) ^C		d G J	Pq	ХҮ	XREF: X(?)Y(?). J^{π} : 1362 γ to 1 ⁺ , 1085 γ to 2 ⁺ ; primary γ from 2 ⁻ . See also J^{π} comment for 1354 level.
			Continu	ued on ne	ext page (fo	potnotes at end of table)

E(level) [†]	J ^{π &}	$T_{1/2}^{\ddagger}$	XREF		Comments
1436.2 4	(4 ⁺)		В		$J^{\pi}: \Delta J = (0), D + Q \gamma \text{ to } (4)^+.$
1438.75 <i>3</i>	$(1)^{+}$		D GHI K MNOPQ	V XY	XREF: H(?)Q(1435).
					J^{π} : L(d, α)=0(+2) from 0 ⁺ ; L(d,p)=1+3 from 3/2 ⁻ ;
					$L(^{3}He,p)=2.$
1461.38 <i>13</i>	(2^{-})		B G M OP	ХҮ	XREF: X(?).
					E(level): possible doublet in (d,p) and (d, α).
					J^{n} : L(d,p)=0+4 from $3/2^{-}$; L(d, α)=(3) from 0 ⁺ .
					$J^{\pi}=4^{-}$ assigned in ('Li,pn γ) without supporting
1400 10	1+		0		arguments. $\pi_{\rm e}$ (311-4) $\Omega_{\rm em} = \Omega_{\rm em} = \pi_{\rm e}$
1499 10	$(2)^{-}$				$J^{(1)}$: L(*He,t)=0 and Gamow-Teller transition.
1499.20 J	(2)		D GHIJK H OF	UV XI	I^{π} : γ to 1 ⁺ (g s) I (d p)=0 from 3/2 ⁻ : I (d α)=(1+3)
					from 0^+ : $L({}^{3}\text{He n})=1$
1521.148.79	$(2)^{+}$		GHTIK M OP	XY	J^{π} : $\gamma(\theta)$ in (pol n. γ): L(d.p)=1 from $3/2^{-1}$: L(d. α)=2
1021111012	(-)				from 0^+ .
1550.49 11	$(1^+, 2^+, 3^+)$		D G K M OP	V XY	J^{π} : γ to 2 ⁺ ; L(³ He,p)=2 from 0 ⁺ . But L(d,p)=4 from
					$3/2^{-}$ (for a possible doublet) is inconsistent with
					positive parity.
1594.19 <i>4</i>	6-	20.4 ns 6	BC EFG N	W	μ =+1.06 3 (1972B116,2020StZV)
					XREF: F(1590).
					μ : DPAD method in (d,p γ) (19/2B116). Other: +1.02
					0 (IFOM (α ,pn γ), 19/1SuZK). I^{π} : $\gamma(\alpha)$ in (α ,pn γ) I (α , d)=5 for a 1500 group and
					agreement of $\sigma(\theta)$ with DWBA calculations for
					configuration= $\pi p_{2/2} \otimes v g_{0/2}$.
					$T_{1/2}$: weighted average of 22 ns 3 (¹⁹⁸ Pt(⁷⁶ Ge,Xy)).
					1997Is13 (also 2001Is02)); 19 ns 2 (γ (t) in
					$(\alpha, pn\gamma)$), 1976Ch36); 20.4 ns 7 (γ (t) in (d, p γ),
					1972B116) and 20.4 ns 6 (γ (t) in (α ,pn γ),
					1971SuZR).
1594.39 <i>3</i>	$(1^+, 2)$		B G IJK MNOPQ	V XY	XREF: $B(?)Q(1591)$.
					J [*] : primary γ s from 1 and 2 in (n,γ) E=2, 2.00 keV: $\alpha \alpha$ to 1^+ 2^+ I (d p)=4 from $2/2^-$ for a doublet
					suggests $\pi = -$ for one component $I(d \alpha) = 4$ from 0^+
					for a 1589 group is inconsistent with $J=1.2$.
1607.30 5	$(2^+,3)$		G J M OP	ХҮ	XREF: X(?).
	~ • •				J ^{π} : primary γ from 2 ⁻ in (n, γ) E=2.66 keV; 1032.7 γ
					to 4^+ , 998.0 γ to 2^+ . L(d, α)=0(+2) from 0^+
					suggests 1 ⁺ .
1615.8 5	$(5)^{+}$		B DE		XREF: D(1602).
					J^{π} : $\Delta J=1 \gamma$ to 4^+ ; L(³ He,p)=4. 5 ⁻ assigned in
1(200 10	(1,, 7)(+)				('L1,pn γ) without supporting arguments.
1630? 10	$(1 \text{ to } 5)^{(1)}$		M		J^{n} : L(d,p)=(3) from $3/2$.
1048 10	(2)		n	0	AREF: M(?)U(1/00). I^{π} : I (d p)=(0+2) from $2/2^{-1}$: 2^{-1} from I (d 2 Ha)
1683 126 25	$(1^+ 2^+)^{C}$		d CH K M OPO	v	Solution $J = (0+2)$ from $3/2$, 2 from $L(0, He)$.
1005.120 25	(1,2)		u di kirolo		I^{π} : possible vs to (3 ⁺) and (0) ⁺ L(d p)=0(+2.3)
					from $3/2^-$ and $L(d,\alpha)=(0+2,1)$ suggest two levels
					near this energy with $J^{\pi}=1^{-},2^{-}$ and $J^{\pi}=1^{+}$;
					$L(^{3}He,p)=2$ for a 1689 group which overlaps 1683
					and 1700 levels suggests positive parity.
1700.65 5	$(1,2^+)$		d G M OP	V Y	J^{π} : γ to (0) ⁺ , but L(d,p)=2+4 from 3/2 ⁻ and
					$L(d,\alpha)=(3)$ from 0 ⁺ suggest 2 ⁻ ,3 ⁻ ,4 ⁻ ; $L(^{3}He,p)=2$
					tor a 1689 group which overlaps 1683 and 1700
1706 1 5	(4^{+})		DE		ievers suggests positive parity. I^{π} : $AI = 1$ (M1 + E2) α to (3 ⁺)
1700.1 5	(+)		D E		$\mathbf{J} \cdot \Delta \mathbf{J} = \mathbf{I}, (\mathbf{I}\mathbf{V}\mathbf{I}\mathbf{I} \top \mathbf{L}\mathbf{i}\mathbf{Z}) \neq \mathbf{I}\mathbf{U} (\mathbf{J} \cdot \mathbf{J}).$
			Continued on next	nage (foo	trates at and of table)

E(level) [†]	J ^{π &}	XREF		Comments
1736.4 5	(4^{+})	ΒE		$J^{\pi}: \Delta J=(0), (M1+E2) \gamma \text{ to } (4)^+.$
1739.79 6	(3+)	d G M	у	J^{π} : L(d, α)=4 from 0 ⁺ for a group at 1737 <i>10</i> and 1165.2 γ to (4) ⁺ limits J^{π} to be (3 ⁺ ,4 ⁺ ,5 ⁺); 1293.9 γ from the 3033.6 level with J^{π} limited to (0,1,2) ⁻ from other evidence. See J^{π} comment for 3033.6 level.
1742.58 5	(1+,2,3+)	d G OP	у	J^{π} : γ s to 1 ⁺ and (3) ⁺ ; L(³ He,p)=2 for 1741+1775 doublet suggests 1 ⁺ ,2 ⁺ ,3 ⁺ for any of the five levels near this energy.
1749.2 <i>3</i>	(≤4) ^b	d G		J^{π} : see J^{π} comment for 1739 level.
1768.95 6	(5 ⁺)	BEG	VY	XREF: Y(1775). J ^π : L(d, α)=4 from 0 ⁺ ; ΔJ=2 γ to 3 ⁺ ; γ to (4) ⁺ . γ from (1 ⁺) is inconsistent.
1779.55 4	(1+,2+)	D GHIKMOPQ		XREF: $D(1775)M(1775)O(1774)Q(1775)$. J^{π} : primary γ s from 1 ⁻ and 2 ⁻ in (n, γ) E=0.577, 2 keV; γ s to 1 ⁺ and 3 ⁺ : L(d p)=3(+1) from 3/2 ⁻ . See J^{π} comment for 1768 level
1852.65 <i>3</i>	(1 ⁺ ,2 ⁺)	A D GHIKMOPQ	V Y	J^{π} : primary γ s from 1 ⁻ and 2 ⁻ in (n, γ) E=0.577, 2 keV; γ to 1 ⁺ and L(d,p)=1 from 3/2 ⁻ ; L(³ He,p)=2. L(d, α)=4 from 0 ⁺ disagrees
1884 10	(1+,2,3,4-)	М	Y	Will $J = 1,2$. XREF: M(?). $I^{\pi} : I (d \alpha) = (2 3) \text{ from } 0^+$
1900.28 5	(1 ⁺)	D GIKmOP	у	J^{π} : L(d,q)=(0+2) from 0 ⁺ ; L(d,p)=1 from 3/2 ⁻ for a group at 1900 8: L(J^{3} He p)=2(+0) for a group at 1907 10
1905.084 15	(2 ⁻)	GI m O Q	v y	XREF: Q(1911)v(1913).
				J^{π} : $\gamma(\theta)$ in (pol n, γ); γ to (3) ⁺ ; L(³ He,t)=1 from 0 ⁺ for a group at 1911 <i>10</i> .
1905.28 8	(4^{+})	В		$J^{\pi}: \Delta J = (0) \gamma \text{ to } (4)^+.$
1917.4 <i>11</i>	(≤4 [−]) ^{<i>C</i>}	Н	v	XREF: v(1913).
1925.0 7	$(4,5,6^+)$	В		J^{π} : γ to 4 ⁺ , and yrast pattern of population in (⁷ Li,pn γ) reaction.
1940.0 20	(1^{+})	D M OP	Y	J^{π} : L(d, α)=2(+0) from 0 ⁺ ; L(d,p)=(1) from 3/2 ⁻ ; L(³ He,p)=0.
1970.0 20	$(<3^{+})^{d}$	OP		XREF: O(1969).
1976.32 18		G m	v y	J^{π} : γ to 4 ⁺ suggests 2 ⁺ to 6 ⁺ . See also comment for 1979 level.
1979.1 7	(5 ⁺)	B E m	v y	J ^π : L(d,α)=4 from 0 ⁺ for a group at 1980 8; Δ J=2 γ to 3 ⁺ . Also L(d,p)=(1,3) from 3/2 ⁻ .
2019.8 6	(4 ⁺)	В		$J^{\pi}: \Delta J = (0) \gamma \text{ to } (4)^+.$
2020.8 4	$(2^+, 3^+)$	E H M OPQ	Y	XREF: Q(2016).
	,			J^{n} : L(d, α)=2 from 0 ⁺ ; 315 γ to (4 ⁺), 2021 γ to 1 ⁺ . Also L(d,p)=(1+3) from 3/2 ⁻ .
2041.8 5	(≤3 ⁺) ^d	d OP r		J^{π} : L(³ He,p)=2 for 2047 group suggests 1 ⁺ ,2 ⁺ ,3 ⁺ for any of the three levels near this energy.
2050.00 9	(1+,2,3-)	d GHIKm r	у	J^{π} : primary γ s from 1 ⁻ and 2 ⁻ in (n, γ) E=0.577, 2 keV and γ to (3 ⁺). L(d, α)=4 from 0 ⁺ and L(d,p)=(0,1) for a 2050 group suggest positive parity for one of two levels near 2050 keV. See J^{π} comment for 2041 level.
2053.3 10	(≤4 ⁺)	dE m r	у	J^{π} : γ to 2 ⁺ . See J^{π} comment for 2041 level.
2060.0 20	$(\leq 3^{+})^{d}$	OPqr	v	
2064.5 11	(≤4 [−]) ^C	H qr	v y	
2072.8 4	(5 ⁻)	BC E	W	J ^π : Δ J=1, (M1+E2) γ to 6 ⁻ . 1976Ch36 assigned 5 ⁻ , assuming the level corresponds to L(d,p)=4 group. But L(d,α)=3 group suggests the level may also correspond to 2075 level populated in (n,γ).
2075.09 11	(2 ⁻ ,3 ⁻ ,4 ⁻)	G M	У	XREF: M(2069). J^{π} : L(d, α)=3 from 0 ⁺ and L(d,p)=4 from 3/2 ⁻ .
2080.1 15	$(1^+, 2, 3^+)$	OP		J^{π} : 1718 γ to 3 ⁺ , 2080 γ to 1 ⁺ .
2091.3 4	(4 ⁻)	В		$J^{n}: \Delta J=(0), D+Q \gamma \text{ to } (4)^{+}.$
2092.24 16	$(1^+, 2^+, 3^+)$	D G M	Y	J^{n} : L(d, α)=2 from 0 ⁺ ; L(³ He,p)=2. Also L(d,p)=(3) from 3/2 ⁻ .
2115? 10	$(0 \text{ to } 3)^{(+)}$	M		J^{n} : L(d,p)=(1) from $3/2^{-}$.

⁶⁴Cu Levels (continued)

E(level) [†]	J ^{π&}	XREF		Comments
2139.7 7	$(0^+, 1, 2, 3^+)^d$	d OP		J^{π} : 1400.5 γ to 2 ⁺ , 1477 γ to 1 ⁺ . See also J^{π} comment for 2144 level.
2144.54 6	(2+)	d GIKM	V Y	J^{π} : primary γ from 1 ⁻ in (n, γ) E=2.038 keV and γ s to 1 ⁺ , 4 ⁺ . L(d, α)=4(+2) from 0 ⁺ suggests 3 ⁺ . L(d,p)=1 from 3/2 ⁻ agrees with 2 ⁺ . L(³ He,p)=2 for 2146 group suggests 1 ⁺ ,2 ⁺ ,3 ⁺ for any of the two levels near this energy
2184.2 5	(3 ⁺)	M OP	Y	J^{π} : L(d,p)=1 from 3/2 ⁻ and L(d, α)=(4) from 0 ⁺ .
2212 9	$(1 \text{ to } 5)^{(+)}$	M M OD	v	J^{π} : L(d,p)=(3) from 3/2 ⁻ .
2221.0 20	(3)	n OP	1	J^{π} : L(d, α)=4 from 0 ⁺ and γ to 1 ⁺ .
2244.0 20	$(1^+, 2^+, 3^+)$	d P		XREF: $d(2246)$.
2251.6 7	(5 ⁺)	B EF		π^{-1} (h) F^{-2} (h) $F^{$
2253.86 11	(≤3+)	d G	Y	$T = \frac{1}{2} = 1, (11+12), (10+12), (1$
2267.01 6	(2 ⁻)	G m OP	UV y	J ^{γ} : γ to 1 ⁻ . See comment for 2246. XREF: m(2265)U(2290)V(2260)y(2265). E(level): doublet in (d, α) and (d,p).
				J^{π} : L(d,p)=2+4 from 3/2 ⁻ ; γ from (1 ⁺) favors 2 ⁻ ; 2 ⁻ from (d, ³ He).
2274.24 8	$(0^+, 1, 2, 3^+)^d$	G m OP	у	XREF: m(2265)O(2275)y(2265). J ^π : 1929.5y to 1 ⁺ , 1996y to 2 ⁺ .
2279.76 5	1+ <i>a</i>	d GIK Qr		J^{π} : L(³ He,t)=0 for composite of 2280+2301 levels and Gamow-Teller transitions. Also L(³ He,p)=2 for 2290 level suggests 1 ⁺ 2 ⁺ 3 ⁺ for any of the two levels near this energy
2301.04 6	1+	d GIK OPQr	Y Y	XREF: O(2295)Y(2294). J^{π} : L(³ He,t)=0 for composite of 2280+2301 levels and
2309.4 10	(3+)	M OP	Y	Gamow-Teller transitions. See also comment for 2279.8 level. XREF: M(2311)O(2310).
2316.50 7	(1 ⁻ ,2 ⁻)	G K M OP		J^{A} : L(d, α)=4 from 0 ⁺ and L(d,p)=1 from 3/2 ⁻ . XREF: M(2327).
2322.6.5	(5^{-})	R F		$J^{n}: L(d,p)=U(+2)$ from $3/2$. $I^{\pi}: \Lambda I=(0) (M1+F2) \propto to (5^{-})$
2324.75 19	$(1^+, 2^+, 3^+)$	DG		J^{π} : L(³ He,p)=2.
2354.59 7	$(0^+, 1, 2, 3^+)^d$	G m OPQ	v	J^{π} : 2356 γ to 1 ⁺ , 1616 γ to 2 ⁺ .
2360.50 11	(≤3)	d G K m	y	J ^{π} : primary γ from 1 ⁻ ,2 ⁻ in (n, γ) E=th; 1119 γ to 1 ⁽⁺⁾ ,2 ⁽⁺⁾ L(³ He,p)=2 for 2369 group suggests 1 ⁺ ,2 ⁺ ,3 ⁺ for any of the three
2276 25 0	(1+)	d C M	v	levels near this energy.
2570.55 9	(1^{+})	u G n	I	J^{π} : L(d, α)=0(+2) from 0 ⁺ . See J^{π} comment for 2360 level.
2378.1 4	(7 ⁻)	BC EF	W	XREF: F(2370). J^{π} : $\Delta J=1$, (M1+E2) γ to 6 ⁻ ; probable configuration= $\pi f_{5/2} \otimes v g_{9/2}$
2381.2 15	$(0^+, 1, 2, 3^+)^d$	d OP		(1979Ch01). J^{π} : 2102 γ to 2 ⁺ , 2382 γ to 1 ⁺ . See also J^{π} comment for 2360
2387.1 <i>4</i> 2387.89 <i>11</i>	(6^{-}) (1^{+})	BE GI MOQ	Y	J^{π} : $\Delta J=1$, D+Q γ to (5 ⁻). XREF: M(2389)Q(2386).
2415.2 7	(4,5,6 ⁺)	В		J^{π} : L(d, α)=0(+2) from 0 ⁺ . J ^{π} : γ to 4 ⁺ , and yrast pattern of population in (⁷ Li,pn γ) reaction.
2417.0.20	$(1^+ 2^+ 3^+)$		v	See also comments for 2417 level.
2417.0 20	(1,2,5)	D H OP	I	E(level): triplet in (d,α) . J^{π} : γ to 1 ⁺ ; L(³ He,p)=2 from 0 ⁺ for a group at 2414 10. But L(d,p)=0+4 from 3/2 ⁻ suggests 2 ⁻ for a questionable level at 2415 L(d,p)=0+4 from 0 ⁺ suggests 2 ⁺ 4 ⁺ 5 ⁺ for a group at 2415 10
2435.9 7	(4,5,6 ⁺)	В		J^{π} : γ to 4 ⁺ , and yrast pattern of population in (⁷ Li,pn γ) reaction.
		G		

⁶⁴Cu Levels (continued)

E(level) [†]	J ^{π &}		Х	REF			Comments
2456.66 8	(1^{+})	D	G	OP			J^{π} : L(³ He,p)=0 from 0 ⁺ ; 1560.9 γ to 3 ⁺ ;
2465.47 10	(1-,2-)		GΙ	M Q		Y	J ^{π} : primary γ from 1 ⁻ in (n, γ) E=2.038 keV; γ to 1 ⁺ and L(d,p)=0+2 from 3/2 ⁻ . Also L(d, α)=(1) from 0 ⁺ .
2491.2 <i>15</i>	$(0^+, 1, 2, 3^+)^d$			m OP r		у	XREF: m(2494)y(2494). J ^{π} : 2332 γ to 2 ⁺ , 2491 γ to 1 ⁺ . L(d,p)=2 from 3/2 ⁻ and L(d, α)=3 from 0 ⁺ for a group at 2494 9 suggest 2 ⁻ ,3 ⁻ ,4 ⁻ .
2493.49 7	(2 ⁺ ,3 ⁺)		G	m		у	 XREF: m(2494)y(2494). J^π: 1830.3γ to 1⁺, 1918.7γ to 4⁺. But L(d,α)=3 from 0⁺ and L(d,p)=2 from 3/2⁻ give (2⁻,3⁻,4⁻) for a 2494 9, which could indicate a different level.
2497.58 <i>3</i>	(1,2 ⁺)		GΙ	m r		у	XREF: m(2494)y(2494). J ^{π} : primary γ from 1 ⁻ in (n, γ) E=2.038 keV and 1618 γ to (0) ⁺ . See also comment for 2493 level.
2498.4 6 2507.26 11	$_{(\leq 3)^a}^{(5^+)}$	B d	GIK	OPQr			$J^{\pi}: \Delta J=1, D+Q \gamma \text{ to } (4^{+}).$ XREF: Q(2511).
2517.6 7	(5 ⁻)	в					J ^{<i>n</i>} : L(³ He,p)=2 for a 2515 group suggests (1 ⁺ ,2 ⁺ ,3 ⁺) for any of the two levels near this energy. J ^{<i>n</i>} : $\Delta I=1$, D+O γ to (4 ⁻).
2522 7		d		M0 r		Y	XREF: Y(2520). J^{π} : L(d, α)=(0+2) from 0 ⁺ suggests (1 ⁺) and L(d,p)=(0) from 3/2 ⁻ cuprents (1 ⁻ / ₂). So a comment for 2507 level
2533.60 7	(2 ⁻)		G K	M OP		Y	Suggests (1, ,2). See comment for 2507 level. XREF: $M(?)Y(?)$. J^{π} : $L(d,\alpha)=(0+2)$ supports (1 ⁺) for a questionable level at 2534 10, whereas, $L(d,p)=0(+2)$ from 3/2 ⁻ for a group at 2534 10 suggests 1 ⁻ 2 ⁻ : 192 5 χ from 2726 (3 ⁺) level
2567 6	(3+,4+,5+)			0		Y	XREF: Y(2550). J^{π} : L(d, α)=4, 4+2 from 0 ⁺ .
2583.3 <i>10</i> 2586 6	(5 ⁻) (3 ⁺)	В		MO		Y	J^{π} : $\Delta J=1$, D+Q γ to (4) ⁺ . XREF: M(2581). I^{π} : L (d α)=4(+2) from 0 ⁺ and L (d n)=3 from 3/2 ⁻ .
2594.4 4	(1 ⁺)		GIK	М		Y	J^{π} : L(d, α)=(0+2) from 0 ⁺ . L(³ He,p)=2 for a 2608 group suggests $1^+, 2^+, 3^+$ for any of the three levels near this energy.
2607 7		D		MO		Y	XREF: M(2611)Y(2611). J^{π} : L(d, α)=4 from 0 ⁺ and L(d,p)=0 from 3/2 ⁻ for doublets suggest J^{π} =3 ⁺ ,4 ⁺ ,5 ⁺ and J^{π} =1 ⁻ , 2 ⁻ . See J^{π} comment for 2594 level.
2632 10	1+			ΜοQ		Y	XREF: M(2622)o(2631)Q(2643)Y(2622). J ^{π} : L(d, α)=0+2 from 0 ⁺ ; L(³ He,t)=0 and Gamow-Teller transition. See J ^{π} comment for 2594 level.
2635.48 11	(≤3⁺)		G	Мо		Y	XREF: M(2634)o(2631)Y(2634). J ^{π} : primary γ from 1 ⁻ ,2 ⁻ in (n, γ) E=th and γ to (1 ⁺). L(d, α)=0(+2) from 0 ⁺ and L(d,p)=2(+0,1) from 3/2 ⁻ suggest (for doublets) J ^{π} =1 ⁺ and J ^{π} =0 ⁻ to 4 ⁻ .
2647.3 <i>4</i> 2647.97 <i>12</i>	(5) (1 ⁺)	В	G K	mOQ	u		J ^π : ΔJ=(0), D+Q γ to (5 ⁻). XREF: u(2660). J ^π : L(³ He,t)=L(d, ² He)=0. But L(d,p)=4(+0) from 3/2 ⁻ for a doublet suggests π =- for one of the levels: 1 ⁺ 2 ⁻ from (d ² He)
2657.33 5	(1+,2)		GΙ	m O	u		The first of the
2670 10	(1,2)	D		М	U	Y	XREF: M(?)U(2660). J^{π} : L(d,p)=0 from 3/2 ⁻ . L(d, α)=(3+1) from 0 ⁺ favors 2 ⁻ . L(³ He,p)=2 for a 2679 group suggests 1 ⁺ ,2 ⁺ ,3 ⁺ ; 1 ⁺ ,2 ⁻ from (d. ² He). There may be two levels near this energy.
2692.1 <i>4</i> 2695.21 <i>9</i>	(6 ⁻) (1 ⁻ ,2 ⁻)	ΒE	G	MO		Y	J^{π} : $\Delta J=1$, dipole γ to (7 ⁻); γ to 6 ⁻ . XREF: M(2692)O(2691)Y(2692).

⁶⁴Cu Levels (continued)

E(level) [†]	J ^{π&}		XREF		Comments
2716.9 5 2717.97 <i>10</i>	(7 ⁻) (1 ⁻ ,2 ⁻)	B E G	MOq	Y	J ^{π} : L(d,p)=0 from 3/2 ⁻ for a doublet. γ to (3) ⁺ disfavors 1 ⁻ . J ^{π} : Δ J=1, D+Q γ to 6 ⁻ . XREF: M(2720)O(2723)Y(2720). I ^{π} : L(d p)=0+2 from 3/2 ⁻
2726.16 6	(3+)	D G	q		J ^{π} : L(³ He,p)=2 from 5/2 . J ^{π} : L(³ He,p)=2 from 0 ⁺ ; 957 γ to (5 ⁺), 1428 γ to (1) ⁺ ; primary γ s from 1 ⁻ ,2 ⁻ in (n, γ) E=th. But primary γ from 1 ⁻ in (n, γ) E=2.038 keV is inconsistent with (3) ⁺ .
2732.30 8 2764.16 <i>10</i>	$(0^+, 1, 2)$ $(1^-, 2^-)$	G I D G	q M O Q	U Y	J ^{π} : primary γ from 1 ⁻ in (n, γ) E=2.038 keV and γ s to 1 ⁺ , 2 ⁺ . XREF: M(2760)O(2757)Q(2760)U(2780)Y(2760). J ^{π} : L(d,p)=0+2 from 3/2 ⁻ ; L(³ He,p)=1; L(d, α)=(3,2+4) for a
2776.55 7	(1+,2+)	GHI	M	u	doublet; 1 ⁻ , 2 ⁻ from (d, ⁻ He). XREF: M(2774)u(2780). J ^{π} : primary γ s from 2 ⁻ and 1 ⁻ in (n, γ) E=0.577, 2.06 keV; γ s to 1 ⁺ and (3) ⁺ : I (d n)=1 from 3/2 ⁻ : 1 ⁺ 2 ⁻ from (d ² He)
2807 10	(1 ⁻ ,2 ⁻)	D	MQ	Y	$\begin{aligned} &\text{XREF: } M(2800)Q(2821)Y(2814). \\ &J^{\pi}: \ L(d,p)=0 \ \text{from } 3/2^{-}. \ \text{Others: } L(d,\alpha)=(0+2) \ \text{from } 0^{+} \ \text{suggesting } 1^{+} \\ &\text{and } \ L(^{3}\text{He},p)=0 \ \text{for } 2801+2827 \ \text{suggesting } 0^{+},1^{+} \ \text{for this doublet} \\ &\text{are inconsistent.} \end{aligned}$
2811.6 <i>5</i> 2830.53 <i>7</i>	(6 ⁻) (1 ⁺ ,2,3 ⁺)	B DGK	т	Y	 J^π: ΔJ=1, dipole γ to (5⁺). XREF: M(2823)Y(2823). J^π: 1476γ to (3)⁺, 2830γ to 1⁺. Others: L(d,p)=0+2 from 3/2⁻ for a doublet suggests 1⁻, 2⁻. L(d,α)=(2,3) from 0⁺ for a doublet suggests J^π=1⁺,2⁺,3⁺ or 3⁻,4⁻,5⁻; L(³He,p)=0 for 2801+2827 suggests 0⁺,1⁺ for this doublet.
2854 10	$0^+, 1^+$		M Q	Y	J^{π} : L(³ He,t)=0 from 0 ⁺ ; L(d,p)=1 from 3/2 ⁻ for a doublet. L(d, α)=(3) from 0 ⁺ for a doublet suggesting 3 ⁻ 4 ⁻ 5 ⁻ is inconsistent
2868.5 11	(3 ⁺)	D H	M	Y	XREF: M(2876)Y(2876).
2892.35 7	(1 ⁺)	G K	M	Y	J ^{**} : L(d,p)=1+3 from 5/2 ; L(d, α)=4 from 0 [*] ; L([*] He,p)=2. XREF: M(2891)Y(2891).
2896.79 7 2909 <i>10</i>	(3 ⁺) 1 ⁺	G I D	M Q	Y	 J[*]: L(d,p)=1+5 from 5/2 and L(d,α)=0(+2) from 0⁺. J^π: 440.1γ to (1⁺), 1127.8γ to (5⁺). XREF: M(?). E(level): weighted average of 2907 <i>10</i> from (³He,p), 2913 <i>11</i> from (d,p), 2905 <i>10</i> from (³He,t), and 2913 <i>11</i> from (d,α). J^π: L(³He,t)=0 from 0⁺; L(d,p)=1 from 3/2⁻; L(d,α)=(0+2) from 0⁺; L(³He, r) - (0+2).
2914.3 <i>10</i> 2925.8 <i>4</i> 2932.54 <i>10</i>	(5 ⁻) (6 ⁻) (2 ⁻)	B B GI	М	Y	L($\operatorname{He}, p) = (0+2)$. $J^{\pi}: \Delta J = 1$, dipole γ to $(4)^+$. $J^{\pi}: \Delta J = (0)$, M1+E2 γ to (6^-) . XREF: M(2931)Y(2931). $J^{\pi}: L(d, p) = 0, 2$ from 2/2 ⁻ and L(d, p) = (1+2) from 0 ⁺ .
2949.5 7 2965.5 7 2970 11	(5^{-}) (5^{-}) $(3^{+},4^{+},5^{+})$	B B	M R	Y	J ^{π} : L(d,p)=0+2 from 5/2 and L(d, α)=(1+5) from 0 ⁻ . J ^{π} : Δ J=1, D+Q γ to (6 ⁻). J ^{π} : Δ J=1, D+Q γ to (6 ⁻). XREF: M(2970)R(2982)Y(2970).
2985 11	(2 ⁻)	D	M Q		J [*] : L(d, α)=4 from 0 ⁺ . Also L(^o L1, ^o He)=(2) from 0 ⁺ . XREF: Q(2981).
3013.30 5	(1 ⁻ ,2 ⁻)	GI	M q		J [*] : L(a, p)=0+2 from $3/2$; L("He,p)=3. XREF: M(3009)q(3024).
3033.56 12	(2 ⁻)	GI	M q		$J^{\pi}: L(a,p)=0(+2)$ from $3/2^{-1}$. XREF: M(3030)q(3024). $J^{\pi}:$ primary γ from 1 ⁻¹ in (n,γ) E=2.038 keV and L(d,p)=2 from $3/2^{-1}$ gives $J^{\pi}=(0^{-},1^{-},2^{-})$; 1293.9 γ to the 1740 level with J^{π} limited to $(3^{+},4^{+},5^{+})$ by L(d, α)=4 from 0^{+} . $J^{\pi}(3033.6)=(2^{-})$ then further limits $J^{\pi}(1740)$ to be (3^{+}) .
3051.1 7	(7 ⁻)	ΒE	M		XREF: M(3043). J ^{π} : ΔJ=1, M1+E2 γ to (6 ⁻).

⁶⁴Cu Levels (continued)

E(level) [†]	Jπ&	XREF	Comments
3051.75 <i>9</i> 3071.5 <i>11</i>	$(\leq 3^+)^d$ (2 ⁻)	G M D H M Q	XREF: M(3055). XREF: D(3066)M(3077)Q(3064). J ^{π} : L(³ He,p)=1(+3); primary γ from 2 ⁻ in (n, γ) E=0.579 keV;
3080.85 9	(2 ⁻ ,3 ⁻)	G K M	L(d,p)=4 from $3/2$. XREF: M(3089). J ^{π} : primary γ from 1 ⁻ ,2 ⁻ in (n, γ) E=th; 583.2 γ to (1,2 ⁺); L(d,p)=(4) from $2/2^{-}$.
3111.77 8 3125.06 <i>13</i>	$(1^+,2)$ $(1^+,2^+)$	G I D G I Q	J^{π} : primary γ from 1 ⁻ in (n, γ) E=2.038 keV; γ s to 1 ⁺ and (3 ⁺). XREF: D(3130)Q(3122). J^{π} : L(³ He,p)=2 from 0 ⁺ ; primary γ from 1 ⁻ in (n, γ) E=2.038
3126.0 <i>3</i> 3.15×10 ³ <i>15</i>	(7 ⁻) 1 ⁺	ΒΕ	$J^{\pi}: \Delta J=1, (M1+E2) \gamma \text{ to } (6^{-}).$ V E(level): binned data from 3.0 to 3.25 MeV. Gamow-Teller transition from 0 ⁺ g.s. of ⁶⁴ Zn in (³ He,t). J ^π : L(³ He,t)=0.
3154 <i>10</i> 3176.9 <i>7</i> 3190.85 <i>11</i>	(0 to 4) ⁽⁻⁾ 1 ⁺	M B D GH M QR U	 J^π: L(d,p)=(2) from 3/2⁻. J^π: γ to (6⁻). XREF: M(3192)Q(3185)R(3195)U(3190). J^π: L(³He,t)=L(d,²He)=0; L(³He,p)=2. Others: L(d,p)=0 from 3/2⁻ for 3192+3233 suggesting negative parity is inconsistent;
3191.1 4	(8 ⁻)	AB E	$L(d,^{2}He)=0$, Gamow-Teller transition in $(d,^{2}He)$, $(t,^{3}He)$. XREF: A(3200).
3207.53 8 3231 <i>10</i> 3257.55 6	$(0,1,2) (1^+,2^+,3^+) (1^+,2^+)$	GIQ DM DGIKMQ	J ^{<i>n</i>} : $\Delta J=1$, (M1+E2) γ to (7 ⁻); $\Delta J=2$, (E2) γ to 6 ⁻ . J ^{<i>π</i>} : γ to 1 ⁺ ; primary γ from 1 ⁻ in (n, γ) E=2.038 keV. J ^{<i>π</i>} : L(³ He,p)=2. XREF: M(3260)Q(3252). J ^{<i>π</i>} : L(³ He,p)=2; γ to 1 ⁺ ; primary γ from 1 ⁻ in (n, γ) E=2.038 keV
3268.4 7	(6,7,8 ⁻)	В	J^{π} : γ to (6 ⁻), and yrast pattern of population in (⁷ Li,pn γ) reaction.
3278.6 7	(7,8,9 ⁻)	В	J ^{π} : γ to (7 ⁻), and yrast pattern of population in (⁷ Li,pn γ) reaction.
3296 10	(3+,4+,5+)	D M q	XREF: M(3290). J ^{π} : L(³ He,p)=4. See comment for 3313 level.
3313.09 8	(0,1,2)	GIKM q	XREF: M(3311). J^{π} : γ to 1 ⁺ ; primary γ from 1 ⁻ in (n, γ) E=2.038 keV; L(d,p)=0
3343.98 17	(0 ⁻ ,1,2,3 ⁺) ^C	fGH Q	Trom 3/2 for 3290+3311 suggests $J^{n}=1, 2$. XREF: f(3340)Q(3339). J^{π} : γ s to 1 ⁺ and (2) ⁻ .
3351.5 8 3352.83 <i>4</i>	(6^{-}) $(1,2,3^{-})^{a}$	B fG I	J ^π : Δ J=1, D+Q γ to (5 ⁻). XREF: f(3340). J ^π : 1447.69γ to (2 ⁻), 3074.9γ to 2 ⁺ ; primary γ from 1 ⁻ in (n,γ) E=2.038 keV.
3376.4 <i>5</i> 3412.12 <i>9</i>	(6 ⁻) (1 ⁻ ,2 ⁻)	B D GIKM	J^{π} : $\Delta J=1$, D+Q γ to (5 ⁺); 6 ⁻ proposed in (⁷ Li,pn γ). XREF: D(3397)M(3411).
3440.18 7	$(0^+, 1, 2, 3^-)^a$	GI M	J ^{<i>n</i>} : L(³ He,p)=1; L(d,p)=(0) from $3/2^{-}$ for a doublet; γ s to 2 ⁺ . XREF: M(3448). J ^{<i>n</i>} : γ to (2 ⁺ ,3 ⁺).
3465.57 12	$(0^{-},1,2,3^{-})^{a}$	d GI m	J^{π} : L(³ He,p)=2 for 3472+3513 suggests 1 ⁺ ,2 ⁺ ,3 ⁺ for any of the five levels in the range 3465-3524: γ to (2 ⁻)
3475.20 16	(0 ⁺ ,1,2) ^{<i>a</i>}	d GIKm	XREF: d(3472)m(3475). J^{π} : γ to 1 ⁺ and 2 ⁺ . L(d,p)=2 from 3/2 ⁻ for a triplet suggests 0 to 4 ⁻ . See J^{π} comment for 3465 level.
3488.6 5 3493 35 10	(8^{-}) $(0^{+} 1 2 3)^{b}$	B	J^{π} : $\Delta J=1$, D+Q γ to (7 ⁻). XREE: d(3472)M(3492)
JTJJ.JJ 17	(0,1,2,3)	u u kii	211111 . $U(J + L) H(J + JL)$.

⁶⁴Cu Levels (continued)

E(level) [†]	J ^π &	XREF	Comments
3510.55 6	(1,2)	d GHI M	J ^{π} : γ to 2 ⁺ . See J ^{π} comment for 3465 level. XREF: d(3513)M(3515). J ^{π} : primary γ s from 2 ⁻ and 1 ⁻ in (n, γ) E=0.579 and 2.038 keV; γ s
3524.64 11	0+,1+	d G K Q	to 1 ⁺ and 2 ⁺ . See J^{*} comment for 3465 level. XREF: d(3513)Q(3522).
3596.00 6	(0,1,2) ^{<i>a</i>}	d G I m	J [*] : L(⁺ He,t)=0 from 0 ⁺ . XREF: d(3607)m(3604). I^{π} : γ to 1 ⁺ and primary γ from 1 ⁻ . See I^{π} comment for 3603 level
3603.09 <i>15</i>	(1,2 ⁺)	d G m	XREF: d(3607)m(3604). J^{π} : 2724.8 γ to (0) ⁺ . L(d,p)=2 from 3/2 ⁻ for 3604+3623 suggests 0 to 4 ⁻ . L(³ He,p)=1 for a 3607 group suggests 0 ⁻ ,1 ⁻ ,2 ⁻ for any of the two levels near this energy.
3604.9 <i>4</i> 3629.40 <i>9</i>	(7^{-}) $(0,1,2,3^{-})^{a}$	B GIM	J ^π : Δ J=1, (M1+E2) γ to (6 ⁻); Δ J=2, (E2+M3) γ to (5 ⁻). XREF: M(3623).
3674 <i>10</i> 3681.6 <i>10</i> 3686.7 <i>10</i> 3687 <i>10</i>	$(0^+, 1^+)$ (6,7,8 ⁻) (7 ⁻)	Q B B D M	J ^{π} : L(³ He,t)=0 for composite of 3674+3705 levels. J ^{π} : γ to 6 ⁻ , and yrast pattern of population in (⁷ Li,pn γ) reaction. J ^{π} : Δ J=1, D+Q γ to 6 ⁻ . J ^{π} : L(³ He,p)=2 for 3686+3713 suggests 1 ⁺ ,2 ⁺ ,3 ⁺ for any of these
3711.80 14	$(0^+, 1^+)$	D G I M Q	two levels. XREF: Q(3705). $I^{T_{1}}$, L (³ 1)a t)=0 for composite of 2674+2705 levels.
3734.1 8 3763 <i>10</i>	(7,8,9 ⁻)	B D M	J^{π} : γ to (7 ⁻), and yrast pattern of population in (⁷ Li,pn γ) reaction. J^{π} : $L({}^{3}\text{He},p)=2$ for 3763+3802 suggests 1 ⁺ ,2 ⁺ ,3 ⁺ for any of these
3783.16 8	(1,2 ⁺)	GIKM	XREF: M(3791). J^{π} : γ s to 2 ⁺ and (0) ⁺ ; primary γ in (n, γ) E=2.038 keV. L(d,p)=(0)
3790 <i>30</i>	(9 ⁺)	F	from $3/2^-$ for $3763+3791$ suggests $1^-, 2^-$ for one level. E(level): energy is consistent with 3798 level from $(\alpha, pn\gamma)$ and $(^7\text{Li}, pn\gamma)$, but J^{π} assignment from (α, d) is in disagreement with (9^-) from in-beam γ -ray work. J^{π} : L (α, d) =8 for a 3790 group and agreement of $\sigma(\theta)$ with DWBA
3800.1 4	(9 ⁻)	B E	calculations for configuration= $\pi g_{9/2} \otimes v g_{9/2}$. E(level): see comment for 3790 level.
3802.73 13	(0+,1+)	D G Q	J [*] : ΔJ=1, M1+E2 γ to (8); ΔJ=2, Q γ to (7). XREF: Q(3804). J ^π : L(³ He,t)=0 for composite of 3804+3827 levels; L(³ He,p)=2 for a
3826.92 10	(1 ⁺)	G Q	group at 3802 10 suggests $(1^{+}, 2^{+}, 5^{+})$. XREF: Q(3827). J^{π} : L(³ He,t)=0 for composite of 3804+3827 levels: γ to 3 ⁺ .
3902 <i>10</i> 3970 <i>10</i>	$(1^-, 2^-)$ (1^+)	D M D Q	J ^π : L(d,p)=0 from 3/2 ⁻ ; L(³ He,p)=1. J ^π : L(³ He,t)=0 for composite of 3966+3995+4031+4063+4101+4136 levels, and Gamow-Teller transition for 3966 level. Also L(³ He p)=2
3987.8 <i>6</i> 3990.85 <i>21</i>	(9 ⁻) (1 ⁺)	BE GQR	$J^{\pi}: \Delta J=2, (E2) \gamma \text{ to } (7^{-}).$ $U \qquad XREF: Q(3995)R(3998)U(4010).$ $J^{\pi}: L(^{3}\text{He},t)=0 \text{ for composite of } 3966+3995+4031+4063+4101+4136$
4034.01 8	(1 ⁺)	DGIM QR	levels, and Gamow-Teller transition for 3966 level; γ to 3 ⁺ . XREF: M(4020)Q(4031)R(4039). J ^{\pi} : L(³ He,p)=2; γ to 1 ⁺ ; L(⁶ Li, ⁶ He) from 0 ⁺ for 4039+3998; L(³ He,t)=0 for composite of 3966+3995+4031+4063+4101+4136 levels. But L(d,p)=2 from 3/2 ⁻ suggests π =
4071.59 10	(1 ⁺)	G Q	XREF: Q(4063). J^{π} : L(³ He,t)=0 for composite of 3966+3995+4031+4063+4101+4136 levels and Gamoy Teller transition for 4063 level
4101 10	(0 ⁺ ,1 ⁺)	Q	J^{π} : L(³ He,t)=0 for composite of 3966+3995+4031+4063+4101+4136

E(level) [†]	Jπ&	XR	EF	Comments
				levels.
4140.84 11	$(0^{-}, 1^{-}, 2^{-})$	D G M	Q	XREF: M(4130)Q(4136).
				J^{π} : γ to 1 ⁺ ; L(d,p)=2 from 3/2 ⁻ ; L(³ He,p)=1. L(³ He,t)=0 for
				composite of 3966+3995+4031+4063+4101+4136 levels suggests
				$(0^+, 1^+).$
4162.0 8	$(6,7,8^{-})$	В		J^{π} : γ to (6 ⁻), and yrast pattern of population in (⁷ Li,pn γ) reaction.
4164.7 8	$(7, 8, 9^{-})$	В		J^{π} : γ to (7 ⁻), and yrast pattern of population in (⁷ Li,pn γ) reaction.
4166.4 5	(9 ⁻)	В		J^{π} : $\Delta J=2$, $Q \gamma$ to (7^{-}) .
4205 10	1+		QU	XREF: U(4190).
				J^{π} : L(d, ² He)=0 and Gamow-Teller transition; L(³ He,t)=0 for
				composite of 4205+4222 level.
4222 10	$(0^+, 1^+)$		Q	J^{π} : L(³ He,t)=0 for composite of 4205+4222 levels.
4257 10	$(2^{-}, 3^{-}, 4^{-})$	D		J^{π} : L(³ He,p)=3.
4264.07 17	$(1,2^+)$	GΙ		J^{π} : γ to $(0)^+$.
4269.3 6	$(7.8.9^{-})$	В		J^{π} : γ to (7 ⁻), and vrast pattern of population in (⁷ Li.pn γ) reaction.
4293 10	(1^+)		0	I^{π} : L(³ He t)=0 for composite of 4293+4311 levels, and
1295 10	(1)		×.	Gamow-Teller transition for 4293 level
4311 10	$(0^+ 1^+)$		0	$I^{\pi} \cdot I ({}^{3}\text{He t})=0$ for composite of 4293+4311 levels
4316 10	(4^{-})	м д	~	$I^{\pi} \cdot I ({}^{3}\text{He n}) = 5 \cdot I (d n) = (2) \text{ from } 3/2^{-1}$
4310 10	$(1^+ 2^+)$	СТ	D	S $I = I(10,p) - 5, I(0,p) - (2) IIOIII 5/2 .YREF: P(A308)$
-527111	(1,2)	01	K	I^{π} : primary at from 1 ⁻ in (n at): at to (3) ⁺ : I (⁶ I i ⁶ He)-2
4260 1 7	$(0, 10, 11^{-})$	D		J. primitively from 1 in (ii, γ), γ to (J), E(EI, HC)=2.
4300.17	(9,10,11)	D	0 11	\mathbf{y} is (9), and yrast pattern of population in (\mathbf{L} , \mathbf{p}) reaction.
4373 10	1		Q U	AREF. $0(4370)$.
				J^{-1} : $L(u, -\Pi e)=0$ and Gamow-Tener transition. $L(-\Pi e, t)=0$ for composite of $4272 + 4412 + 4452$ levels
1112 10	(0+1+)		0	π_{1} L (311-4) 0 for comparison of 4272 + 4412 + 4452 house
4413 10	$(0^{+},1^{+})$		Q	$J^{*:}$ L(² He,t)=0 for composite of 4575+4415+4452 levels.
4430 10	(4,5,6)	D		$J^{*}: L({}^{3}He,p)=5.$
4432.95 24	(1,2)	G M		XREF: $M(4420)$.
4444 49 17	(0+1+)	C	0	$J^{*}: L(d,p)=0$ from $3/2$.
4444.46 17	(0, 1)	G	Q	AREF: $Q(4432)$.
4540 49 10	(0, 1, 2, 2-)			J^* : L(⁵ He,t)=0 for composite of 43/3+4413+4452 levels.
4549.48 19	$(0,1,2,3)^{a}$	A GI		AKEF: A(4550).
4552.0 8	(8,9,10)	В		$J^{\prime\prime}$: γ to (8), and yrast pattern of population in (⁷ Li,pn γ) reaction.
4556.2 11	(7,8,9 ⁻)	В		J^{π} : γ to (7 ⁻), and yrast pattern of population in (7Li,pn γ) reaction.
4560 30	(7^{+})	F		J'': possible configuration= $\pi g_{9/2} \otimes v d_{5/2}$ or
				configuration = $\pi d_{5/2} \otimes v g_{9/2}$ and systematics of population in (α ,d)
15(0,5,6	(10-)	D		(1994F101).
4308.3 0	(10)	в		$J^{m}: \Delta J = 2, (E2) \gamma \text{ IO } (8).$
4571 10	$(4, 5^-, 6^-)$	D		$J^{*}: L(^{*}He,p)=5.$
4599 10	(1^{+})		Q	J": L(He,t)=0 for composite of $4599+4630$ levels, and
	(a.t.)			Gamow-Teller transitions for both the levels.
4630 10	(1^{+})		Q	J": L('He,t)=0 for composite of $4599+4630$ levels, and
	(1 b - 1			Gamow-Teller transitions for both the levels.
4670	$(1^+, 2^-)$		U	E(level): this level may correspond to 4630 in (³ He,t).
				$J^n: \sigma(\theta) \text{ in } L(d,^2He).$
4691.7 <i>11</i>	(7,8,9 ⁻)	В		J ^{π} : γ to (7 ⁻), and yrast pattern of population in (⁷ Li,pn γ) reaction.
4763.38 12	1+	G	Q U	XREF: Q(4744)U(4760).
				J^{π} : L(d, ² He)=0; L(³ He,t)=0.
4877 10	$(0^+, 1^+)$		Q	J^{π} : L(³ He,t)=0 for composite of
				4877+4916+4957+5000+5030+5053+5116 levels.
4898.5 9	(10 ⁻)	В		J^{π} : $\Delta J=1$, (M1+E2) γ to (9 ⁻).
4916 <i>10</i>	$(0^+, 1^+)$		Q	J^{π} : L(³ He,t)=0 for composite of
				4877+4916+4957+5000+5030+5053+5116 levels.
4957 10	$(0^+, 1^+)$		Q	J^{π} : L(³ He,t)=0 for composite of
			-	4877+4916+4957+5000+5030+5053+5116 levels.
5000 10	$(0^+, 1^+)$		Q	J^{π} : L(³ He,t)=0 for composite of
	x- , ,		Continued or	n next page (footnotes at end of table)

E(level) [†]	J ^π &		XRE	F		Comments
						4877+4916+4957+5000+5030+5053+5116 levels.
5030 10	$(0^+, 1^+)$			Q		J^{π} : L(³ He,t)=0 for composite of 4877+4916+4957+5000+5030+5053+5116 levels.
5043 10	(2 ⁻)	D	M		U	XREF: $M(5000)U(5060)$.
5052 10	(0+1+)			~		J^{π} : L(d,p)=2 from 3/2 ; L(³ He,p)=3; 2 from (d, ² He).
5053 10	$(0^{+},1^{+})$			Q		J^: $L(^{\circ}He, I)=0$ for composite of $4877\pm4016\pm4057\pm5000\pm5030\pm5053\pm5116$ levels; and 5053 level
						interpreted as Gamow-Teller transition.
5085.6 8	(9)	В				J^{π} : $\Delta J=1$, D+Q γ to (8 ⁻).
5095.8 8	(9)	В				J^{π} : $\Delta J=1$, D+Q γ to (8 ⁻).
5116 10	$(0^+, 1^+)$			Q		J^{π} : L(³ He,t)=0 for composite of
						4877+4916+4957+5000+5030+5053+5116 levels.
5198 10	$(0^+, 1^+)$			Q		J^{π} : L(³ He,t)=0 for composite of 5198+5227 levels.
5227 10	$(0^+, 1^+)$			Q		J^{π} : L(³ He,t)=0 for composite of 5198+5227 levels.
5320 10	$(2^-, 3^-, 4^-)$	DF				$\begin{array}{c} \text{XREF: } F(5350). \\ \pi^{\pi} + 2^{3} \text{II} \\ \end{array}$
5222 10	0+ 1+			~		$J^{\pi}: L({}^{3}He,p)=3.$
5322 10	$0^{+},1^{+}$			Q		$J^{n}: L({}^{\circ}He,t)=0.$
5512 10	$0^{+},1^{+}$			Q		$J^{n}: L(^{\circ}He, t)=0.$
5560 10	$(0^{+}, 1^{+})$			Q		J ^{π} : L(^{π} He,l)=0. I ^{π} : L(³ He t)=0 for composite of 5560+5617 levels levels
5617 10	(0, 1) $(0^+, 1^+)$			Q		J : L(He,t)=0 for composite of 5560+5617 levels levels. I^{π} : L(³ He t)=0 for composite of 5560+5617 levels levels
5665 10	(0, 1) $(0^+, 1^+)$			Q O		J : L($\Pi(t,t)=0$ for composite of 5665+5705 levels
5686.5.9	(0, 1)	В		Q		J^{π} : $AJ=2$, $O \gamma$ to (9^{-}) .
5705 10	$(0^+, 1^+)$	2		0		J^{π} : L(³ He,t)=0 for composite of 5665+5705 levels.
5809 10	$(0^+, 1^+)$			Q		J^{π} : L(³ He,t)=0 for composite of
						5809+5864+5922+5967+6030+6116+6156+6201 levels.
5864 10	$(0^+, 1^+)$			Q		J^{π} : L(³ He,t)=0 for composite of
						5809+5864+5922+5967+6030+6116+6156+6201 levels.
5912.6 <i>11</i>	(9,10,11 ⁻)	В				J ^{π} : γ to (9 ⁻), and yrast pattern of population in (⁷ Li,pn γ) reaction.
5917.5 11	(10)	В				J^{π} : $\Delta J=1$, D+Q γ to (9 ⁻).
5922 10	$(0^+, 1^+)$			Q		J^{π} : L(³ He,t)=0 for composite of
50(7.10	(0+1+)			~		5809+5804+5922+590/+0050+0110+0150+0201 levels.
3907 10	(0,1)			Q		J^{-1} : L(* He,t)=0 for composite of 5809±5864±5922±5967±6030±6116±6156±6201 levels
6003 10	$(0^+ 1^+)$			0		I^{π} · I (³ He t)=0 for composite of
0005 10	(0,1)			×		5809+5864+5922+5967+6030+6116+6156+6201 levels.
6070.2 11	(10)	В				J^{π} : $\Delta J=1$, D+Q γ to (9 ⁻).
6116 10	$(0^+, 1^+)$			Q		J^{π} : L(³ He,t)=0 for composite of
						5809+5864+5922+5967+6030+6116+6156+6201 levels.
6156 10	$(0^+, 1^+)$			Q		J^{π} : L(³ He,t)=0 for composite of
(201 10	(0+ 1+)					5809+5864+5922+5967+6030+6116+6156+6201 levels.
6201 10	$(0^+, 1^+)$			Q		J^{n} : L(³ He,t)=0 for composite of 5000 + 5054 + 5022 + 5057 + 6020 + 6116 + 6156 + 6201 havels
6221 10	0+ 1+			0		3609+3604+3922+3907+0030+0110+0130+0201 levels.
6413 10	$0^{+},1^{+}$			Q		$J : L(\Pi C, t) = 0.$ $I^{\pi} : I ({}^{3}H_{2}, t) = 0.$
6464 10	$(0^+, 1^+)$			0		$J^{\pi}: L({}^{3}He t)=0$ for composite of 6464+6493+6529+6570 levels
6493 10	$(0^+, 1^+)$			õ		I^{π} : L(³ He t)=0 for composite of 6464+6493+6529+6570 levels.
6529 10	$(0^+, 1^+)$			õ		J^{π} : L(³ He,t)=0 for composite of 6464+6493+6529+6570 levels.
6570 10	$(0^+, 1^+)$			Q		J^{π} : L(³ He,t)=0 for composite of 6464+6493+6529+6570 levels.
≈6630	x- 1 1	A				C AV I I I I I I I I I I I I I I I I I I
6740 10	$0^+, 1^+$			Q		J^{π} : L(³ He,t)=0.
6810 <i>6</i>	0^{+}		C	Q		E(level): 6810 and 6826 form a doublet in $({}^{3}\text{He,t})$ with L=0.
						J^{π} : component of IAS of ⁶⁴ Ni g.s.; L(³ He,t)=0.
6826 6	0^{+}	D		Q		E(level): 6810 and 6826 form a doublet in (³ He,t) with L=0.
						J^{π} : component of IAS of ⁶⁴ Ni g.s.; L(³ He,p)=0; L(³ He,t)=0.

⁶⁴Cu Levels (continued)

 $\frac{E(\text{level})^{\dagger}}{7339 \ 10} \quad \frac{J^{\pi \&}}{(1^{+})}$

D

XREF

 J^{π} : L(³He,p)=0(+2).

Comments

⁶⁴Cu Levels (continued)

E(level) [†]	Jπ&		XREF		Comments
(7916.403 16)	1-,2-	G			S(n)=7915.868 24 (2021Wa16).S(n)=7915.867 24 (2016Te05, measured from energy of primary ground state transition.
					J ^{π} : s-wave capture in ⁶³ Cu (g.s. $J^{\pi}=3/2^{-}$). From $\gamma(\theta)$ in (pol n, γ) on oriented ⁶³ Cu, J=1 fraction determined as 94% 2 (1983De28). From $\gamma(\text{circ pol})$, J=1 fraction >92% (1973Ko16).
7916.438 24	2-	Н			E(level): resonance state with $S(n)+E(n)$, where $E(n)(lab)=0.579$ keV 1 (2018MuZY), $S(n)=7915.868$ 24 (2021Wa16). J ^{π} : from 2018MuZY.
7917.874 24	1-	:	Γ		E(level): resonance state with $S(n)+E(n)$, where $E(n)(lab)=2.038$ keV 3 (2018MuZY), $S(n)=7916.868$ 24 (2021Wa16). J ^{π} : from 2018MuZY.
7918.469 24	2-		J		E(level): resonance state with S(n)+E(n), where E(n)(lab)=2.642 keV 4 (2018MuZY), S(n)=7916.868 24 (2021Wa16). J^{π} : from 2018MuZY.
(7938.49)	(1,2,3+)		K		E(level): resonance state with S(n)+E(n), where E(n)(lab)=24 keV, S(n)=7916.868 24 (2021Wa16). I^{π} : s- or p-wave capture in ⁶³ Cu g s. $I^{\pi}=3/2^{-1}$: γ to (0) ⁺
8188 10	(2 ⁺)	D	0		XREF: O(8170). $J^{\pi}: IAS of first 2+ state of 64Ni: L(3He p)=2.$
11×10 ³ <i>I</i>	-			v	E(level): binned data from 11 to 12 MeV. J^{π} : L(t. ³ He)=1.

[†] From a least-squares fit to $E\gamma$ data for levels populated in γ -ray studies. Reduced χ^2 of 2.8 is somewhat larger than critical χ^2 of 1.2, as some of the primary $E\gamma$ values from capture states do not agree well with the fitted values. Above 1 MeV excitation, matching of level energies from different reactions is somewhat ambiguous due to high level density.

[‡] From pulsed beam in ⁶⁴Ni(p,n γ) (1976Wh01), unless noted otherwise.

[#] Other less precise T_{1/2} measurements: 13.02 h *33* (2006Ab30), 12.82 h *4* (1973Ne02, 511-radiation counting); 12.58 h *96* (1973ArZI, scintillation detector); 12.4 h *17*, 13.6 h *7*, 13.8 h *14* (1972Cr02, Ge(Li) detector); 12.65 h *17* (1969Bo11, NaI well-type detector); 12.80 h *4* (1968Ke12); 12.8 h (1967Vi08), 12.86 h *3* (1966Li09); 12.70 h *3* (1966Fu16, coincidence method); 12.86 h *3* (1965Pa18, NaI detector); 13.5 h, 13.9 h (1965He08); 12.85 h *5* (1959Po64); 12.8 h (1957Be46); 12.80 h *3* (1955To07); 12.88 h *3* (1951Si91); 12.9 h (1951Ku42); 12.8 h (1951St89); 12.74 h *7* (1951Sc56); 12.80 h *4* (1950Ra62); 12.8 h (1950Ho26); 12.8 h (1949Pe09); 13 h (1948Mi12); 12.8 h (1947Se33); 11.9 h *10* (1944Hu05,1943Hu03); 12.8 h (1939De01); 12.8 h *3* (1939Sa02); 12.8 h *3* (L.N. Ridenour et al., Phys. Rev. 53, 770 (1938); 12 h (1937He05); 16 h (1937Bo10); 12.8 h *1* (1936Va02); 10 h (1935Am01).

[@] Variation of $T_{1/2}$ with chemical environment and temperature studied by 2008Fa12, 1987MaZL, 1979Ko31, 1979Eh01, 1977Do07, 1975MaXN, 1976Ha66, 1975He03, 1974Jo17, 1973De56, 1973Ha60, 1972Em01, 1972-Auric (P. Auric and J.I. Vargas, Chem. Phys. Lett. 15, 366 (1972)), 1968Ke12. A change of 1 to 2% with chemical form of the samples reported by 1968Ke12 is not confirmed by others.

[&] Due to high level density above 1 MeV, the J^{π} values indicated by L-transfers in particle reaction studies are given in parentheses. Correspondence of levels seen in different reactions is not unique. L-transfers from multi-nucleon transfer reactions such as (³He,p) and (d, α) are considered as weak arguments due to reaction mechanism not well known.

^{*a*} Primary transition from 1⁻ (in ${}^{63}Cu(n,\gamma)$ E=2.038 keV) suggests 0,1,2,3⁻ with 3⁻ less likely for strong primary transitions.

^b Primary transition from 1^{-} , 2^{-} (in 63 Cu(n, γ) E=th) suggests 0,1,2,3,4⁻ with 4⁻ less likely for strong primary transitions.

^{*c*} Primary transition from 2⁻ (in ${}^{63}Cu(n,\gamma)$ E=0.577 and/or ${}^{63}Cu(n,\gamma)$ E=2.66 keV) suggests 0⁻,1,2,3,4⁻ with 0⁻ and 4⁻ less likely for strong primary transitions.

^d Transition to 1^+ (g.s.) suggests $(0,1,2,3^+)$.

					Adop	ted Levels, (Gammas (cont	inued)
						<u> </u>	⁶⁴ Cu)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α^{d}	Comments
159.282	2+	159.280 3	100	0.0 1+	M1(+E2)	<0.055	0.0160 4	B(M1)(W.u.)=0.26 +6-4; B(E2)(W.u.)<63 δ : from measured B(E2)(W.u.)<49 in Coulomb excitation and T _{1/2} =21 ps 4. Others: +0.12 4, +0.02 1, +0.04 4, 0.02 4, -0.01 2 in (p,n γ), +0.035 in (α ,pn γ). Assuming T _{1/2} is correct, δ =+0.12 4 gives B(E2)(W.u.)=250 170 which is larger than B(E2)(W.u.)<49 measured in Coulomb excitation.
278.256	2^{+}	118.8 5		159.282 2+	[M1+E2]		0.18 15	
0.40.005		278.244 10	100	$0.0 1^+$	M1+E2	+0.10 2	0.00398 7	B(M1)(W.u.) > 0.11; B(E2)(W.u.) > 16
343.897	I+	184.612 10	4 1	159.282 2*	(M1(+E2))	+0.10 10	0.0113 15	B(M1)(W.u.)>0.024 Branching ratios from (p,n γ) (1976Gr13). δ : RUL(E2)=300 does not allow other possible δ =-3.0 to -7.1.
		343.94 <i>3</i>	100 1	0.0 1+	[M1+E2]		0.0043 20	B(M1)(W.u.)>0.13 Branching ratios from (p,n γ) (1976Gr13). δ : any value possible from $\gamma(\theta)$ in (p,n γ). B(M1)(W.u.) for pure M1. B(E2)(W.u.)>1827 for pure E2 is much larger than PLU = 300 suggesting that $\delta(E2/M1) < 0.4$
362.230	3+	84.0 5	0.62 8	278.256 2+	[M1]		0.086	B(M1)(W.u.)>0.047 E_{γ},I_{γ} : from ⁷ Li,pn γ). B(M1)(W.u.) for pure M1. B(E2)(W.u.)>11090 for pure E2 is much larger than RUL=300, suggesting that δ (E2/M1)<0.017.
		202.948 5	100.0 5	159.282 2+	M1+E2	+0.06 3	0.0086 2	B(M1)(W.u.)>0.62; B(E2)(W.u.)>23 I _v : from ⁷ Li,pny).
		362.30 5	2.4 2	0.0 1+	[E2]			B(E2)(W.u.)>31 E _{γ} ,I _{γ} : from (n, γ) E=th.
574.614	(4)+	212.388 <i>10</i> 415.26 <i>10</i>	100 3.4 <i>6</i>	362.230 3 ⁺ 159.282 2 ⁺	(M1(+E2)) [E2]	+0.01 3	0.00757 12	B(M1)(W.u.)>0.13 B(E2)(W.u.)>4.8 E _{γ} : from (d,p γ).
608.784	2+	264.882 18	71	343.897 1+	M1+E2	+0.24 17	0.0050 11	B(M1)(W.u.)>0.0054; B(E2)(W.u.)>0.74 Branching ratios from $(p,n\gamma)$ (1976Gr13). These values are consistent with those from $(p,n\gamma)$
		330.47 5	5 1	278.256 2+	[M1+E2]			B(M1)(W.u.) > 0.0022; B(E2)(W.u.) > 34 B(M1)(W.u.) for pure M1, B(E2)(W.u.) for pure E2.
		449.512 10	10 1	159.282 2+	(M1(+E2))	+0.02 7		B(M1)(W.u.)>0.0019
		608.75 <i>3</i>	100 2	0.0 1+	M1+E2	+0.30 8		B(M1)(W.u.)>0.0075; B(E2)(W.u.)>1.8
662.99	1+	318.9 7	19 3	343.897 1+	M1+E2			 B(M1)(W.u.)>0.0041; B(E2)(W.u.)>68 Branching ratios from (p,ηγ) (1976Gr13). Values are consistent with those from (n,γ). δ: +0.2 to +5.7. B(M1)(W.u.) for pure M1, B(E2)(W.u.) for pure E2.
		384.74 5	109 6	278.256 2+	(M1+E2)			B(M1)(W.u.)>0.016; B(E2)(W.u.)>177 δ : +0.07 5 or -2.9 to -4.7. B(M1)(W.u.) for pure M1, B(E2)(W.u.) for pure E2.

From ENSDF

 $^{64}_{29}$ Cu₃₅-15

Т

$\gamma(^{64}Cu)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{d}	Comments
662.99	1^{+}	503.65 6	84 6	159.282	2+	[M1+E2]			B(M1)(W.u.)>0.0052; B(E2)(W.u.)>35
		663.06 5	100 6	0.0	1+	[M1+E2]			B(M1)(W.u.) for pure M1, B(E2)(W.u.) for pure E2. B(M1)(W.u.)>0.0028; B(E2)(W.u.)>11
739.050	2+	376 851 20	28.2	362 230	3+	$(M1(\pm F2))$	-0.11.78		B(M1)(W.u.) for pure M1, $B(E2)(W.u.)$ for pure E2. B(M1)(W.u.) > 0.0056
157.050	2	570.051 20	202	502.250	5	(111(+12))	0.11 10		Branching ratios from (n,γ) .
		395.28 15	4.3 7	343.897	1+	[M1+E2]			$B(M1)(W.u.) > 7.1 \times 10^{-4}; B(E2)(W.u.) > 7.7$
		460 702 20	15 0 7	079 056	a +	() (1 - 52)	0.00.05		B(M1)(W.u.) for pure M1, $B(E2)(W.u.)$ for pure E2.
		460.792.20	15.2 /	2/8.250	2 · 2+	(M1+E2) M1+E2	$-0.29\ 25$ $-0.18\ 11$		B(M1)(W.u.)>0.0014; B(E2)(W.u.)>0.023 B(M1)(W.u.)>0.0058; B(F2)(W.u.)>0.15
		739.12.3	10.8.3	0.0	1+	[M1+E2]	0.10 11		B(M1)(W,u) > 0.0050; B(E2)(W,u) > 0.15 $B(M1)(W,u) > 3.2 \times 10^{-4}; B(E2)(W,u) > 0.98$
		10,112 0	1010 0	010	-	[B(M1)(W.u.) for pure M1, $B(E2)(W.u.)$ for pure E2.
746.241	$(3)^{+}$	137.38 10	12	608.784	2+	[M1+E2]		0.10 8	B(M1)(W.u.)>0.052
									E γ from (d,p γ), I γ from (p,n γ). Not reported in (n, γ).
									B(M1)(w.u.) for pure M1. $B(E2)(w.u.)<4600$ for pure E2 is much larger than RUL=300 suggesting $\delta(E2/M1)<0.26$
		383.7 5	8.6 18	362.230	3+	(M1)			B(M1)(W.u.)>0.0017
									E_{γ} : from (α ,pn γ) and (⁷ Li,pn γ). Not reported in (n, γ).
									I_{γ} : from (⁷ Li,pn γ). Other: 30 in (α ,pn γ).
		467.992 10	100	278.256	2+	M1+E2	+0.08 3		B(M1)(W.u.) > 0.013; B(E2)(W.u.) > 0.25
7746	(1)	588 I	100	159.282	2+ 2+	0			
820.7	(1) (4)	458.5 5	100	362.230	3 3 ⁺	D			
878.274	$(0)^{+}$	534.11 8	71 6	343.897	1+	(M1)			B(M1)(W.u.)>0.0036
		600 [@] e		278.256	2+				
		718.7 5	62	159.282	2+	[E2]			B(E2)(W.u.)>0.28
									Ey from (d,py), ly from (p,ny). Not reported in (n,y) and $\sqrt{2}$ L i prov
		878.277 20	100.2	0.0	1+	[M1]			(Li,piry). B(M1)(W.u.)>0.0012
895.705	$(3)^{+}$	149.3 ^{@e} 5		746.241	$(3)^{+}$				
		157.4 ^{@e} 5		739.050	2+				
		320.7 5	29	574.614	(4)+	(D+Q)			I _γ : from (α ,pn γ). Others: 24 24 in (n, γ), 121 10 in (⁷ Li,pn γ). This γ has been reported in several γ -ray studies, but with different
		52265	70.9	262.220	2+	IM1 - E21			intensities, while not reported in $(p,n\gamma)$.
		555.0 5	19 0	502.250	3	[MIT+E2]			D(M1)(W.u.) > 0.0021; $B(E2)(W.u.) > 12E : weighted average from (d py) and (7Li ppy). This y not$
									reported in $(p,n\gamma)$.
									I_{γ} : from (⁷ Li,pn γ) only.
		(15 100 00	100.2	070 054	a +				B(M1)(W.u.) for pure M1, $B(E2)(W.u.)$ for pure E2.
		617.433-20	100 3	278.256	2*	M1+E2			B(M1)(W.u.)>0.0017; $B(E2)(W.u.)>7.7$
									several γ -ray studies, for example (n,γ) E=Th; $(p,n\gamma)$; $(^{7}Li,pn\gamma)$; $(\alpha,pn\gamma)$, and other reactions with γ rays.

$\gamma(^{64}Cu)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	Comments
895.705	(3)+	736.52 9	10 <i>I</i>	159.282	2+	[M1+E2]	δ: +0.07 to +2.5. B(M1)(W.u.) for pure M1, B(E2)(W.u.) for pure E2. B(M1)(W.u.)>9.4×10 ⁻⁵ ; B(E2)(W.u.)>0.29 δ: +0.40 <i>13</i> for a possible doublet (736.5γ+739.1γ).
		896.0 8	22 8	0.0	1+	[E2]	I_{γ} : from (n, γ) E=thermal. Other: 82 8 in (p,n γ). This γ not reported in ('Li,pn γ). B(M1)(W.u.) for pure M1, B(E2)(W.u.) for pure E2. B(E2)(W.u.)>0.18 E $_{\gamma}$: unweighted average from (p,n γ) and (⁷ Li,pn γ). L: from (p,n γ) only
927.080	1+	565.0 [#] 5	13	362.230	3+	[E2]	B(E2)(W.u.)>4.0
		648.80 <i>4</i>	100 4	278.256	2+	[M1+E2]	May be the same as 565.43γ from 1461 level. B(M1)(W.u.)>0.0048; B(E2)(W.u.)>19 δ : +0.04 11 or -2.5 to -5.7. B(M1)(W.u.) for pure M1 B(E2)(W.u.) for pure E2
		767.795 10	23.7 5	159.282	2+	[M1+E2]	B(M1)(W.u.) for pure W1, B(E2)(W.u.) for pure E2. B(M1)(W.u.)> 6.6×10^{-4} ; B(E2)(W.u.)>1.9 B(M1)(W.u.) for pure M1 B(E2)(W.u.) for pure E2.
		927.05 <i>3</i>	11.6 3	0.0	1^{+}	[M1+E2]	B(M1)(W,u.) > 10i pute W1, B(E2)(W,u.) for pute E2.B(M1)(W,u.)>1.8×10-4; B(E2)(W,u.)>0.36B(M1)(W,u.) for pute M1 B(E2)(W,u.) for pute E2.
1096.5	(2^{+})	937.2.5	100	159.282	2^{+}	D+O	D(WI)(W.u.) for pure WI, $D(E2)(W.u.)$ for pure E2.
1241 087	$1^{(+)} 2^{(+)}$	362.9 ^{@e} 5		878 274	$(0)^{+}$		Main placement from 362 level
1211.007	1,2	494.852.10	100.5	746.241	$(3)^+$		γ not reported in (⁷ Li.pn γ)
		632.34.3	39.2	608.784	2+		γ not reported in (⁷ Li.pn γ).
		877.5.5	07 -	362.230	3+		E_{α} : from (⁷ Li, pny).
		962.68 4	65 2	278.256	2+		
		1081.74 <i>3</i>	49 2	159.282	2+		γ not reported in (⁷ Li,pn γ).
1242.64	$(0,1,2,3^+)$	1242.56 8	100	0.0	1^{+}		
1287.15	$(1^+, 2, 3^-)$	924.91 5	100	362.230	3+		
1287.96	$(0^+, 1, 2, 3^+)$	624.7 <i>5</i>	45	662.99	1+		
		1010.0 [#] 5	40	278.256	2+		May be the same as 1009.35γ from 1905 level.
1200 79	(2^+)	1128.4 5	100	159.282	2+ 1+		
1290.7?	(2^{+})	627.6 3 047.2 5		343 807	1 1+	D	
		1131 2 5		159 282	2^{+}	D	
1208 121	$(1)^{+}$	558 2 [#] 5	6	730.050	$\frac{2}{2^{+}}$		
1290.121	(1)	054 0 [#] 5	10	3/3 807	2 1+		May be the same as $053.07a$ from 2274 level
		$934.0 \ 5$	19	279.256	1 2+		May be the same as 55.577 from 2274 level.
		1019.7 5	52 100 2	278.200	2+ 2+		May be the same as 1019.59γ from 1594.2 level.
		1298.134 20	50 2	0.0	1+		
1320 335	$(1^+ 2^+ 3^+)$	711 7 [#] 5	11	608 784	2+		May be the same as 711.94γ from 2075 level
1520.555	(1,2,5)	958 0 ^{#e} 5	11	362 230	2+ 3+		114, 50 ale same as /11,71, 11011 2073 10101.
		950.0 5 076.5 [#] .5	12	242 207	5 1+		
		910.3 3	15	343.891	1		

				Ado	pted Levels,	Gammas	(continued)
					γ (⁶⁴ Cu)	(continu	ed)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	Comments
1320.335	(1+,2+,3+)	1041.5 [#] 5	8	278.256 2+			
		1320.315 20	100	0.0 1+			
1354.25	$(3)^{+}$	608.9 ^{we} 5		$746.241 (3)^+$			Main placement from 609 level.
		779.65 ^{&} 7	34 2	574.614 (4)+			7
		992.11 9	29 2	362.230 3+	(M1+E2)		Mult.: from $\gamma(\theta)$ and Pol in ('Li,pn γ).
		1076.3 ^{@e} 5	100.2	278.256 2+			May be the same as 1076.35γ from 1439 level.
		1194.89 3	100 3	159.282 21			
		1354.68 ^{cc} 19	18 3	0.0 1+			
1363.17	$(1,2,3^+)$	1085.3# 5	<133	278.256 2+			
1.426.2	(4+)	1363# 1	100	$0.0 1^+$	5.0		May be the same as 1361.76γ from 1521 level.
1436.2	(4 ⁺)	861.3 5	100	574.614 (4)+	D+Q		
1438.75	$(1)^{+}$	700.1 5		739.050 2+			
		775.9 ^{°°} 3	6.5 11	662.99 1+			
		831 1	100 (608.784 2+			
		1076.35 5	100 4	362.230 3			E f_{resp} (d r_{res}) E $-1150.2.5$ in (r r_{res}) Not reported in (r r_{res}) E $-$ th
		1101.7 5	<107	278.230 2			E_{γ} : from (a,p γ). $E\gamma$ =1159.5.5 in (p,n γ). Not reported in (n, γ) E =in.
		1279.41 4	71 3	159.282 2+			<i>iy</i> . nom (p,n <i>y</i>).
		1438.75 7	48 3	0.0 1+			
1461.38	(2 ⁻)	565.43 17	82 27	895.705 (3) ⁺			E_{γ} : from (n,γ) E=th.
		1099.6 5	100 52	362.230 3+	D+Q		E_{γ} : weighted average from (p,n γ) and (⁷ Li,pn γ).
1499.20	$(2)^{-}$	890.5 [#] 5	77	608.784 2+			May be the same as 890.26γ from 2498 level.
		1220.84 4	91 3	278.256 2^+			
		1339.88 4	100 4	159.282 2+			
1501 140	$(2)^{+}$	1499.54 13	63 5	$0.0 1^+$			
1521.148	$(2)^{\circ}$	838.09 <i>19</i> 912 37 6	23 3 21 <i>1</i>	602.99 1 608.784 2 ⁺			
		$947.0^{\#}5$	283	$574.614 (4)^+$			
		$1150.2^{\#}5$	-205	262 220 2+			May be the same as 1159 921a, from 1005 level
		1139.5 3 1177.04 2	<227	302.230 3			May be the same as 1156.6517 from 1905 level.
		$1177.04^{-2} 21$	100.2	545.697 I			
		1501.70-2 5	85 3	$139.282 2^{+}$			
1550/0	(1+2+3+)	812 0 [#] 5	43	730.050^{-2+}			
1330.47	(1,2,3)	$1272.6^{\#}5$	т.) ЛбЛ	278 256 2+			
		1391 25 12	100	159 282 2 ⁺			
1594.19	6-	1019.59 3	100.0 6	$574.614 (4)^+$	(M2+E3)	-0.25	B(M2)(W.u.)=0.078 3; B(E3)(W.u.)=12 +5-4
				. ,	/		δ : $\gamma(\theta)$ in $(\alpha, \text{pn}\gamma)$.
		1231.2 ^e 7	1.04 10	362.230 3+	[E3]		B(E3)(W.u.)=0.57 6
							E_{γ} , I_{γ} : from (¹ Li, pn γ) only. Evaluators treat the placement from 1594, 6 ⁻

From ENSDF

						Adopted Lev	vels, Gammas (continued)
						$\gamma(^{6}$	⁴ Cu) (continued)
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	Comments
1594.19	6-	1314.7 ^e 7	3.2 9	278.256	2+	[M4]	level as uncertain as it is possible that this γ corresponds to 1232.13 γ from 1594, (1 ⁺ ,2) level as seen in (n, γ) E=th. E _{γ} ,I _{γ} : from (⁷ Li,pn γ) only. Evaluators treat the placement from 1594, 6 ⁻ level as highly questionable as it requires mult=M4, with unrealistic B(M4)(W.u.)=6.6×10 ⁶ <i>19</i> . It is possible that this γ corresponds to 1315.3 γ from 1594, (1 ⁺ ,2) level as seen in (d red)
1594.39	(1+,2)	1019.59 ^e 3 1232.13 3 1250 8 [#] 5	100 3	574.614 362.230	$(4)^+$ 3 ⁺		Main placement from 1594.23 level. 1231.2 7 γ placed from 1594, 6 ⁻ level in (⁷ Li,pn γ) may correspond to this γ .
		1315.3 [@] 5 1594.42 7	40 3	278.256 0.0	$1^{2^{+}}$ 1^{+}		1314.7 7 γ placed from 1594, 6 ⁻ level in (⁷ Li,pn γ) may correspond to this γ .
1607.30	(2+,3)	998.0 [#] 5 1032.68 <i>14</i> 1449 ^{#e} 1	100	608.784 574.614 159.282	2^+ (4) ⁺ 2 ⁺		May be the same as 998.28 γ from 2498 level.
1615.8 1683.126	$(5)^+$ $(1^+, 2^+)$	1041.2 5 756.3 [#] 5 805.0 [#] 5	100 6 <4	574.614 927.080 878.274	$(4)^+$ 1 ⁺ $(0)^+$	D+Q	
1700 65	$(1, 2^+)$	937.0 [#] 5 1340.0 [#] 5 1683.09 3 805.0 [#] 5	12 38 100	746.241 343.897 0.0	$(3)^+$ 1^+ 1^+ $(2)^+$		May be the same as 1339.88γ from 1499 level.
1706.1	$(1,2^{+})$	805.0 ⁴ 5 822.33 5 1541.56 ^{&} 17	≤ 48 100 5 51 7	895.705 878.274 159.282 746.241	$(3)^{+}$ $(0)^{+}$ 2^{+} $(2)^{+}$	(M1+E2)	
1736.4	(4^{+})	900.0 7 1161.6 7 1374.4 7	100 100 7 15 4	574.614 362.230	(3) $(4)^+$ 3^+	(M1+E2) (M1+E2)	
1739.79 1742.58	(3^+) $(1^+,2,3^+)$	1165.21 6 846.87 ^{&} 4 1398.70 ^{&} 18 1742.83 20	100 100 <i>3</i> 67 <i>7</i> 72 <i>10</i>	574.614 895.705 343.897 0.0	$(4)^+$ $(3)^+$ 1^+ 1^+		E_{γ} : 1162 <i>I</i> in (α ,pn γ).
1768.95	(5 ⁺)	1195.4 <i>4</i> 1407.08 <i>13</i>	100 <i>4</i> 96 <i>4</i>	574.614 362.230	(4) ⁺ 3 ⁺	Q	I _{γ} : from (⁷ Li,pn γ). I _{γ} ,Mult.: from (⁷ Li,pn γ).
1779.55	(1+,2+)	$1417.27 \ 4$ $1435.3^{\&} \ 4$ $1780^{\#} \ 2$	100 <i>4</i> 8 <i>2</i>	362.230 343.897	3^+ 1^+ 1^+		May be the same as 1792 20., from 2145 band
1852.65	(1+,2+)	1780 ^a 2 1508.68 8 1852.64 3	230 28 2 100 5	0.0 343.897 0.0	1^+ 1^+ 1^+		May be the same as $1/82.20\gamma$ from 2145 level.
1900.28	(1^+)	1557 [#] 2 1900.25 5	38 100 25 1	343.897 0.0	1^+ 1^+ $(2)^+$		
1905.084	(2)	1009.35 5	25 1	895.705	(3)		

From ENSDF

⁶⁴₂₉Cu₃₅-19

Т

$\gamma(^{64}Cu)$ (continued)

E _i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	Comments
1905.084	(2^{-})	1158.831 10	100 2	$746.241 (3)^+$	D.O	
1905.28	(4^+) $(4.5.6^+)$	1331.7 /	100	$574.614 (4)^{+}$ $574.614 (4)^{+}$	D+Q	
1940.0	(1,0,0) (1 ⁺)	$1940^{\#} 2$	100	$0.0 1^+$		
1970.0	(≤3 ⁺)	1970 2	100	0.0 1+		May be the same as 1972.59γ from 2316 level.
1976.32		1401.66 19	100	$574.614 (4)^+$	0	
1979.1 2010.8	(5^+)	1010.8 /	100	$362.230 3^{+}$	Q	It is possible that 313 for in $(^{7}$ L i prov) corresponds to 315 α in $(\alpha$ prov) from
2019.0	(ד)	515.0 5	100	1700.1 (+)	D	2021 level, although, strong 780.0 γ from 2021 level is not reported in (⁷ Li,pn γ).
2020.8	$(2^+, 3^+)$	315 ^a 1		1706.1 (4 ⁺)		
		$780.0^{\#} 5$	100	1241.087 $1^{(+)}, 2^{(+)}$		May be the same as 779.65γ from 1354 level.
		$2021^{\#}_{\#}2$	36	0.0 1+		
2041.8	$(\leq 3^+)$	2043# 2	100	$0.0 1^+$		
2050.00	(1,2,3)	695.41 <i>10</i> 1303 90 <i>11</i>	89 <i>14</i> 100 9	1354.25 (3) ⁺ 746.241 (3) ⁺		
2053.3	(≤4 ⁺)	1894 <i>1</i>	100 9	159.282 2+		E_{γ} : from $(\alpha, pn\gamma)$ only.
2060.0	(≤3+)	2060 2	100	0.0 1+		
2072.8	(5 ⁻)	479.1 5	100	1594.19 6-	(M1+E2)	Mult.: $\gamma(\theta)$ in $(\alpha, pn\gamma)$ and ADO ratio and POL in $(^{1}Li, pn\gamma)$. For J=5, $\delta = +022$.
2075.09	$(2^{-}, 3^{-}, 4^{-})$	711.94 9	100	1363.17 (1,2,3 ⁺)		
2080.1	$(1^+, 2, 3^+)$	1718# 2	97	362.230 3+		
		2080# 2	100	$0.0 1^+$		7
2091.3	(4 ⁻)	629.7 5	100 9	1461.38 (2 ⁻)		In (⁷ Li,pn γ) (2018Sa02), this γ feeds 1460, 4 ⁻ level, based on mult(629.7 γ)=D+Q. But, evaluators have assigned (2 ⁻) to the 1460 level based on L-transfer data. As R _{ADO} =0.98 6 in (⁷ Li,pn γ) is quite large, it is possible that the 629.7 transition is Δ J=2. O rather than Δ J=0, D+O.
		1195.6 7	48 6	895.705 (3) ⁺		
2002.24	(1 + 2 + 2 +)	1517.0 7	38 3	$574.614 (4)^+$	D+Q	
2092.24	$(1^+, 2^+, 3^+)$	1/29.70.22	100	362.230 3		
2139.7	$(0^{+},1,2,3^{+})$	1400.5" 10 1477# 1	100 55	739.050 2 ⁺ 662.00 1 ⁺		May be the same as 1401.66 γ with 1976 level.
		$2130^{\#} 2$	23	$0.0 1^+$		May be the same as 2141.73\(c) from 2301 level
2144.54	(2^{+})	291.71 12	$\frac{23}{28}4$	1852.65 (1 ⁺ ,2 ⁺)		May be the same as 21+1.75 y from 2501 level.
	. ,	1481.75 20	30 4	662.99 1+		
		1535.70 17	27 3	$608.784 2^+$		
		15/0.22/21	23 3	5/4.614 (4)' 362 230 3 ⁺		
2184.2	(3^{+})	830 0 [#] 5	12	1354.25 (3) ⁺		
2101.2		1575 [#] 2	100	608.784 2+		

20

From ENSDF

					1	Adopted Leve	ls, Gammas (o	continued)	⁶⁴ C
						γ (⁶⁴ (Cu) (continued	<u>)</u>	u ₃₅ -21
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^π	Mult. [‡]	Comments		
2184.2	(3^{+})	2184 [#] 2	31	0.0	1+				
2221.0	(3^+)	$2221^{\#}2$	100	0.0	1+				
2244.0	$(1^+ 2^+ 3^+)$	$2244^{\#}$ 2	100	0.0	1+				
2251.6	$(1^{+},2^{+},3^{+})$ (5^{+})	1677.0 7	100	574.614	$(4)^+$	(M1+E2)			
2253.86	(≤3+)	1910.18 14	100	343.897	1+	· · · · ·			
2267.01	(2 ⁻)	1904.80 ^{&} 6		362.230	3+				
		1985 <mark>#</mark> 2		278.256	2+				
2274.24	$(0^+, 1, 2, 3^+)$	953.97 <mark>&</mark> 8	100 7	1320.335	(1+,2+,3+)				
		1929.5 6	28 9	343.897	1+				
		1996 <mark>#</mark> 2	10	278.256	2^{+}				
		2117 <mark>#</mark> 2	8	159.282	2+				
		2275 [#] 2	8	0.0	1+				
2279.76	1+	1670.92 6	100	608.784	2+				
2301.04	1^{+}	259.3 [#] 5	100	2041.8	(≤3 ⁺)				
		1060.0 [#] 5	38	1241.087	$1^{(+)}, 2^{(+)}$				Fro
		1373 [#] 1	54	927.080	1^{+}				B
		1953# 2	38	343.897	1+				EN
		2141.73 7		159.282	2+				SDF
		2300 [#] 2	96	0.0	1+				1]
2309.4	(3 ⁺)	1647 <mark>#</mark> 2	77	662.99	1+				
		2029 <mark>#</mark> 2	100	278.256	2^{+}				
		2152 [#] 2	20	159.282	2+			May be the same as 2153.71γ from 2498 level.	
		2309 [#] 2	17	0.0	1+				
2316.50	(1-,2-)	1972.59 <mark>&</mark> 7		343.897	1+				
		2319 [#] 2		0.0	1+				
2322.6	(5 ⁻)	249.9 5	100	2072.8	(5 ⁻)	(M1+E2) ^b			
2354.59	$(0^+, 1, 2, 3^+)$	747.34 ^{&} 6		1607.30	(2+,3)				
		1616 [#] 2	100	739.050	2^{+}				
		2356 [#] 2	5	0.0	1+				
2360.50	(≤3)	1119.55 <i>19</i>	100	1241.087	$1^{(+)}, 2^{(+)}$				
2376.35	(1^{+})	782.29 14	100 14	1594.39	$(1^+,2)$				
2270 1	(7^{-})	1630.1 3	100 18	1504.10	(3)' 6 ⁻	(M1 + E2)		$\delta = 1$ from (α ppa)	
23/0.1	(1) $(0^+ 1 2 2^+)$	2102 [#] 2	100	1374.19	0 2+	(1VII+E2)		$o1 \operatorname{Hom}(\alpha, \operatorname{pir} \gamma).$	
2301.2	$(0, 1, 2, 3^{+})$	2102 2	100	270.230	∠ 1+				
2387.1	(6^{-})	2382 2 314.0 5	45 100	2072.8	(5^{-})	D+O			64 29
2387.89	(1^+)	1641.70 <i>17</i>	100	746.241	$(3)^{+}$	The second se			u 3

35-21

	Adopted Levels, Gammas (continued)												
					γ (⁶⁴ Cu) (continued)							
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	Comments							
2415.2	$(4,5,6^+)$	1840.6 7	100	574.614 (4)+									
2417.0	$(1^+, 2^+, 3^+)$	1754 [#] 2	100	662.99 1+									
2435.9	$(4,5,6^+)$	1861.3 7	100	$574.614 (4)^+$									
2456.66	(1^+)	1560.94 <mark>&</mark> 9	100	895.705 (3)+									
	(-)	2457# 2		0.0 1+									
2465.47	$(1^{-},2^{-})$	2465.43 11	100	$0.0 1^+$									
2491.2	$(0^+, 1, 2, 3^+)$	2332 [#] 2	7	159.282 2+									
	(* ,-,_,-)	$2491^{\#}$ 2	100	0.0 1+									
2493.49	$(2^+, 3^+)$	1830.34 14	89.8	662.99 1 ⁺									
		1918.69 11	100 8	574.614 (4)+									
2497.58	$(1,2^{+})$	814.45 4	75 <i>3</i>	1683.126 (1+,2+)									
		890.26 4	53 <i>3</i>	1607.30 (2 ⁺ ,3)									
		998.28 8	69 <i>4</i>	1499.20 (2) ⁻									
		1019.24 0	814	8/8.2/4 (0) ⁺									
		1654.22 <i>15</i> 2153 71 6	20 3	002.99 1 3/3 807 1 ⁺									
2498.4	(5^{+})	478.6.5	100 /	2019.8 (4 ⁺)	D+O								
2507.26	(<3)	2345# 2	100	159 282 2+									
2517.6	$(\underline{3})$ (5 ⁻)	426.3 5	100	2091.3 (4 ⁻)	D+O								
2533.60	(2 ⁻)	2533.53 18	100	0.0 1+	C C								
2583.3	(5 ⁻)	2008.7 10	100	574.614 (4)+	D+Q								
2635.48	(≤3 ⁺)	247.58 4	100	2387.89 (1 ⁺)									
2647.3	(5)	575.2 5	100	2072.8 (5 ⁻)	D+Q								
2647.97	(1^+)	1327.62 11	100	$1320.335 (1^+, 2^+, 3^+)$)								
2037.55	(1,2)	974.179	1/1 101	1085.120 (1,2) 895.705 (3) ⁺									
		2497.89.9	100 7	$159.282 2^+$									
		2656.8 3	24 3	0.0 1+									
2692.1	(6 ⁻)	313.4 5	<60	2378.1 (7 ⁻)	D	I_{γ} : from (α ,pn γ).							
		1099.0 5	100	1594.19 6-		E_{γ}, I_{γ} : from ($\alpha, pn\gamma$) only, not reported in (⁷ Li, pn\gamma).							
2695.21	$(1^{-},2^{-})$	1799.48 8	100	$895.705 (3)^+$									
2716.9	(7^{-})	1122.5 5	100	1594.19 6-	D+Q								
2717.97	(1,2)	1/90.30 24	100 10	927.080 1' 2522.60 (2 ⁻)									
2720.10	(3°)	192.33 J 957 27 7	83.5	2333.00 (2) 1768.05 (5 ⁺)									
		1287.40.20	20.3	1438.75 (1) ⁺									
		1428.17 14	33 3	$1298.121 (1)^+$									
		1484.85 25	25 4	1241.087 1(+),2(+)									
2732.30	$(0^+, 1, 2)$	2123.06 23	35 5	608.784 2+									
		2732.13 21	100 10	0.0 1+									
2764.16	$(1^{-},2^{-})$	689.08 5	100 5	2075.09 (2 ⁻ ,3 ⁻ ,4 ⁻	-)								
		2605.2 4	71 18	159.282 2+									

$^{64}_{29}$ Cu $_{35}$ -22

From ENSDF

 $^{64}_{29}\mathrm{Cu}_{35}$ -22

					Adopte	ed Levels, Ga	ammas (continued)
						γ (⁶⁴ Cu) (continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	${ m J}_f^\pi$	Mult. [‡]	Comments
2776.55	(1+,2+)	2037.53 7	100 7	739.050	$2^+_{3^+}$		
		2776.8.4	65 14	0.0	1 ⁺		
2811.6	(6^{-})	1040.7 7	100	1768.95	(5^+)	D	
2830.53	$(1^+, 2, 3^+)$	1476.10 8	100 6	1354.25	$(3)^+$		
		2830.1 4	64 13	0.0	1+		
2892.35	(1^{+})	625.35 5	100 5	2267.01	(2^{-})		
		1649.52 11	56 4	1242.64	$(0,1,2,3^+)$		
2896.79	(3+)	440.13 12	29 4	2456.66	(1^{+})		
		804.29 21	20 4	2092.24	$(1^+, 2^+, 3^+)$		
		1127.84 <i>3</i>	100 3	1768.95	(5^+)		
2914.3	(5 ⁻)	2339.6 10		574.614	$(4)^+$	D	
2925.8	(6 ⁻)	538.6 5	100	2387.1	(6 ⁻)	M1+E2	
2932.54	(2^{-})	2932.06 17	100	0.0	1+		
2949.5	(5 ⁻)	562.4 5	100	2387.1	(6 ⁻)	D+Q	
2965.5	(5 ⁻)	578.4 5	100	2387.1	(6 ⁻)	D+Q	
3013.30	$(1^-, 2^-)$	1574.36 5 2666.6 ^{ce} 14	100 5 18 <i>14</i>	1438.75 343.897	$(1)^+$ 1 ⁺		
3033.56	(2 ⁻)	1293.92 11	100	1739.79	(3 ⁺)		
3051.1	(7 ⁻)	664.0 5	100	2387.1	(6 ⁻)	M1+E2	
3051.75	(≤3 ⁺)	1808.5 <i>3</i>	17 4	1242.64	$(0,1,2,3^+)$		
		3052.2 <i>3</i>	100 14	0.0	1+		
3080.85	$(2^{-},3^{-})$	583.22 10	100 11	2497.58	$(1,2^{+})$		
	(a.t. a)	587.0 3	29.9	2493.49	$(2^+, 3^+)$		
3111.77	$(1^+,2)$	214.97 5	100 10	2896.79	(3^{+})		
	(- -)	3111.6.6	25 /	0.0	1'		
3126.0	('/-)	200.1 5		2925.8	(6 ⁻)		E_{γ} : from ('L1,pn γ) only.
		313.5 5	78 55	2811.6	(6^{-})	D+Q	E_{γ}, I_{γ} : from ('Li,pn γ) only.
		434.6 5	100 27	2692.1	(6)	(M1+E2)	
		/38.5 5	80 /	2387.1	(6)	D+Q	E_{γ}, I_{γ} : from ('L1, pn γ) only.
2156.0		1532.5 5	200	1594.19	6-		E_{γ}, I_{γ} : from ($\alpha, pn\gamma$) only, not reported in ($^{\prime}L_{1}, pn\gamma$).
3176.9	1+	789.8 5	100	2387.1	(6)		
3190.85	1'	937.01 5	100	2253.86	$(\leq 3^{+})$	$(\mathbf{M}_1, \mathbf{E}_2)$	
3191.1	(8)	813.4 5	36.9 22	23/8.1	(7)	(M1+E2)	
2207 52	(0, 1, 2)	1390.3 3	100.0 14	1394.19	(1+)	(E2+M3)	$o(0/Q) = +0.027 \ln (\alpha, pn\gamma).$
5207.55	(0,1,2)	001.170 20 0026 11	100 Z	2370.33	(1^{+}) 1 ⁺		
3257 55	(1+2+)	2200.30 11 1556 84 10	33 J 41 R	927.080	$(1 2^+)$		
5451.55	(1,2)	3257 26 24	100 10	0.0	(1,2) 1 ⁺		
3268.4	(678^{-})	881 3 5	100 10	2387 1	(6 ⁻)		
3278.6	$(7,8,9^{-})$	561 7 5	100	2716.9	(7^{-})		
3313.09	(0,1,2)	261.33 5	100.9	3051.75	$(<3^+)$		
2010.09	(,,,,=)	3312.4 3	76 11	0.0	1+		

$^{64}_{29}$ Cu₃₅-23

From ENSDF

 $^{64}_{29}\mathrm{Cu}_{35}$ -23

$\gamma(^{64}Cu)$ (continued)

E_i (level)	\mathbf{J}^{π}_{i}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	Comments
3343.98	$(0^{-},1,2,3^{+})$	1844.67 21	86 14	1499.20	$(2)^{-}$		
		3001.4 7	100 32	343.897	1+		
3351.5	(6 ⁻)	402.0 5	100	2949.5	(5 ⁻)	D+Q	
3352.83	$(1,2,3^{-})$	634.78 9	46 4	2717.97	$(1^{-},2^{-})$		
		1447.69 <i>4</i>	100 4	1905.084	(2^{-})		
		3074.9 8	37 13	278.256	2+		
3376.4	(6 ⁻)	878.1 5		2498.4	(5 ⁺)	D+Q	
3412.12	$(1^{-},2^{-})$	2048.90 10	84 6	1363.17	$(1,2,3^+)$		
		3133.9 3	89 15	278.256	2+		
2440.10		3253.2 4	100 17	159.282	2^+		
3440.18	$(0^+, 1, 2, 3^-)$	946.64 5	100	2493.49	$(2^+, 3^+)$		
3465.57	(0,1,2,3)	532.94 20	100 24	2932.54	(2)		
2475.20	(0 ± 1.0)	1198./5 10	41 4	2267.01	(2)		
3475.20	$(0^+, 1, 2)$	2811.1 11	21 10	662.99	1'		
2400 6	(0-)	3316.58 23	100 10	159.282	(7-)		
3488.0	(8)	771.5 5	100	2/10.9	(7)	D+Q	
3493.33	(0, 1, 2, 3)	2003.34	100 12	720.050	2 2+		
5510.55	(1,2)	2112.2 3	26.0	739.030	$\frac{2}{2^{+}}$		
		3232.5 5	50 9 67 11	278.230	2 1+		
3524 64	$0^{+} 1^{+}$	1250 45 8	100	2274.24	$(0^+ 1 2 3^+)$		
3596.00	(0,1,2)	1230.43 8	100 11	2274.24	$(0^+, 1, 2, 3^+)$		
5590.00	(0,1,2)	1316 24 7	20.1	2334.39	(0, 1, 2, 3) 1^+		
3603.09	$(1 2^+)$	2724.8.5	42 11	878 274	$(0)^{+}$		
2002.07	(1,2)	2993.91.20	100 10	608.784	2+		
		3603.9.5	26.8	0.0	1+		
3604.9	(7^{-})	228.7 5		3376.4	(6 ⁻)	D+O	
		478.6 5	100 15	3126.0	(7^{-})	,	
		679.2 5	48 13	2925.8	(6-)	D+Q	
		1218.4 7	42 9	2387.1	(6 ⁻)	(M1+E2)	
		1282.4 7	49 7	2322.6	(5 ⁻)	(E2+M3)	
		1531.9 7	45.2 10	2072.8	(5 ⁻)		
3629.40	$(0,1,2,3^{-})$	897.06 5	100	2732.30	$(0^+, 1, 2)$		
3681.6	$(6,7,8^{-})$	2087.4 10	100	1594.19	6-		
3686.7	(7 ⁻)	2092.5 10	100	1594.19	6-	D+Q	
3711.80	$(0^+, 1^+)$	3552.9 7	100	159.282	2+		
3734.1	(7,8,9 ⁻)	1355.9 7	100	2378.1	(7 ⁻)		
3783.16	$(1,2^{+})$	2082.45 8	100 7	1700.65	$(1,2^{+})$		
		2904.6 16	18 14	878.274	$(0)^+$		
		3623.1 4	64 10	159.282	2+		7
3800.1	(9 ⁻)	311.3 5		3488.6	(8 ⁻)	D	E_{γ} ,Mult.: γ from ('Li,pn γ) only.
		608.8 <i>5</i>	100.0 16	3191.1	(8 ⁻)	M1+E2	7
		1422.4 7	12.1 7	2378.1	(7 ⁻)	Q	E_{γ} , I_{γ} ,Mult.: γ from (⁷ Li,pn γ) only.

$\gamma(^{64}Cu)$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.‡	Comments
3800.1	(9^{-})	2206 4 10	686	1594 19	6-	[M3]	E. I. Mult: γ from $(^{7}$ Lipp $\gamma)$ only
3802 73	$(0^+ 1^+)$	1826.2.5	15 4	1976 32	0	[141.5]	$L_{\gamma}, r_{\gamma}, watter \gamma$ from (L_{γ}, pr_{γ}) only.
5002.75	(0,1)	3140.0.3	100 12	662.99	1+		
		3802.0.4	61 12	0.0	1+		
3826.92	(1^{+})	1501.94.20	33 4	2324 75	$(1^+ 2^+ 3^+)$		
5626.92	(1)	2365 32 17	60.6	1461 38	$(1^{-},2^{-},5^{-})$		
		3464 55 22	100 12	362 230	3+		
		3667.6.4	31.5	159 282	2+		
3987.8	(9^{-})	1609 5 5	100	2378.1	(7^{-})	(F2)	
3990.85	(1^+)	3628 36 22	100 10	362 230	3+	(LL)	
5770.05	(1)	3714.0.7	33 10	278 256	2+		
4034 01	(1^{+})	2291 42 7	100 7	1742 58	$(1^+ 2 3^+)$		
105 1.01	(1)	3108.0.7	22 7	927.080	$(1^{+}, 2, 3^{+})$		
		3874 7 5	28.9	159 282	2^{+}		
		4033 4 4	31.5	0.0	1+		
4071 59	(1^{+})	1747 3 3	26.5	2324 75	$(1^+ 2^+ 3^+)$		
1071.59	(1)	2572.03.19	100 10	1499.20	$(1, 2, 3)^{-}$		
		3175 26 25	72.9	895 705	$(3)^+$		
		3729.6.9	16.6	343.897	1+		
		3911.8.5	44 9	159.282	2+		
4140.84	$(0^{-}, 1^{-}, 2^{-})$	1059.95 8	83.5	3080.85	$(2^{-},3^{-})$		
	(* ,- ,-)	3478.0 5	100 22	662.99	1+		
4162.0	$(6,7,8^{-})$	1469.9 7	100	2692.1	(6 ⁻)		
4164.7	$(7, 8, 9^{-})$	1786.5 7	100	2378.1	(7-)		
4166.4	(9 ⁻)	561.8 5	34 10	3604.9	(7^{-})		
	. ,	1789.5 7	100 11	2378.1	(7-)	Q	
4264.07	$(1,2^{+})$	3022.8 4	58 10	1241.087	$1^{(+)}, 2^{(+)}$		
		3385.73 21	100 10	878.274	$(0)^{+}$		
4269.3	$(7, 8, 9^{-})$	664.4 5	100	3604.9	(7 ⁻)		
4327.41	$(1^+, 2^+)$	1136.59 6	100 4	3190.85	1+		
		3431.6 <i>3</i>	88 10	895.705	$(3)^{+}$		
		3718.1 7	31 9	608.784	2+		
4360.1	(9,10,11 ⁻)	560.0 5	100	3800.1	(9 ⁻)		
4432.95	$(1^{-}, 2^{-})$	2838.2 4	100 21	1594.39	$(1^+, 2)$		
		3145.4 4	84 <i>13</i>	1287.15	$(1^+, 2, 3^-)$		
		3506.7 7	50 14	927.080	1+		
4444.48	$(0^+, 1^+)$	3781.8 5	27 7	662.99	1+		
		4166.7 6	20 9	278.256	2+		
		4444.35 24	100 9	0.0	1+		
4549.48	$(0,1,2,3^{-})$	1074.49 21	100	3475.20	$(0^+, 1, 2)$		
4552.0	(8,9,10 ⁻)	1360.9 7	100	3191.1	(8-)		
4556.2	$(7,8,9^{-})$	2178.0 10		2378.1	(7^{-})		
4568.5	(10^{-})	580.5 5		3987.8	(9 ⁻)		

$\gamma(^{64}Cu)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult. [‡]
4568.5	(10 ⁻)	1377.7 7	100 9	3191.1	(8 ⁻)	(E2)
4691.7	$(7, 8, 9^{-})$	2313.5 10		2378.1	(7-)	
4763.38	1+	960.63 9	100 7	3802.73	$(0^+, 1^+)$	
		3442.6 4	52 9	1320.335	$(1^+, 2^+, 3^+)$	
		3521.02 24	96 11	1242.64	$(0,1,2,3^+)$	
4898.5	(10^{-})	1098.4 7	100	3800.1	(9 ⁻)	(M1+E2)
5085.6	(9)	1894.4 7	100	3191.1	(8 ⁻)	D+Q
5095.8	(9)	1904.6 7	100	3191.1	(8 ⁻)	D+Q
5686.5	(11)	1886.4 7	100	3800.1	(9 ⁻)	Q
5912.6	$(9,10,11^{-})$	2112.5 10	100	3800.1	(9 ⁻)	5.0
5917.5	(10)	2117.4 10	100	3800.1	(9 ⁻)	D+Q
60/0.2	(10)	2270.1 10	100	3800.1	(9)	D+Q
(7916.403)	1,2	3153.05 17	0.84 0	4/63.38	1^{+}	
		3300.8 3	0.44 5	4549.48	(0,1,2,3)	
		3472.23	0.55 /	4444.48	$(0^+, 1^+)$	
		3482.9 3	0.35 /	4432.95	(1,2)	
		3388.32 23 2651 6 5	1.03 12	4327.41	$(1^{+}, 2^{+})$	
		3031.0 J	0.194	4204.07	$(1,2^{+})$ $(0^{-},1^{-},2^{-})$	
		3773.27 21	0.01 0	4140.84	(0, 1, 2)	
		3883 0 1	1.40 9	4071.39	(1)	
		4080 11 14	0.447	3826.02	(1^{+})	
		4133 08 13	1 15 5	3783 16	$(1 2^+)$	
		4204 37 15	0.77.4	3711.80	$(0^+, 1^+)$	
		4286 62 13	1.02.5	3629.40	$(0, 1, 2, 3^{-})$	
		4312.8.3	0.85.9	3603.09	$(1,2^+)$	
		4320.24 10	4.08 15	3596.00	(0,1,2)	
		4391.9.3	0.40.5	3524.64	$0^+.1^+$	
		4405.00 12	0.92 5	3510.55	(1,2)	
		4423.12 22	0.42 4	3493.35	$(0^+, 1, 2, 3)$	
		4440.9 <i>3</i>	0.59 7	3475.20	$(0^+, 1, 2)$	
		4450.86 20	0.52 4	3465.57	$(0^{-}, 1, 2, 3^{-})$	
		4475.66 11	1.44 5	3440.18	$(0^+, 1, 2, 3^-)$	
		4504.04 11	1.47 6	3412.12	$(1^{-},2^{-})$	
		4562.95 12	0.95 5	3352.83	$(1,2,3^{-})$	
		4572.5 <i>3</i>	0.30 4	3343.98	$(0^{-}, 1, 2, 3^{+})$	
		4603.07 9	1.64 5	3313.09	(0,1,2)	
		4658.53 8	2.33 6	3257.55	$(1^+, 2^+)$	
		4708.9 4	0.26 4	3207.53	(0,1,2)	
		4790.7 <i>3</i>	0.32 4	3125.06	$(1^+, 2^+)$	
		4803.8 <i>3</i>	0.36 4	3111.77	$(1^+, 2)$	
		4835.1 9	0.09 3	3080.85	(2 ⁻ ,3 ⁻)	
		4883.0 6	0.12 3	3033.56	(2 ⁻)	

$\gamma(^{64}Cu)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π
(7916.403)	$1^{-},2^{-}$	4903.08 20	0.46 3	3013.30	(1-,2)	(7916.403)	$1^{-},2^{-}$	7037.83 16	1.17 6	878.274	$(0)^+$
		4983.51 <i>16</i>	0.61 4	2932.54	(2 ⁻)			7170.10 24	0.92 6	746.241	$(3)^+$
		5019.5 <i>3</i>	0.57 6	2896.79	(3 ⁺)			7177.07 7	7.73 12	739.050	2+
		5023.2 <i>3</i>	0.55 6	2892.35	(1^+)			7253.05 6	10.54 15	662.99	1+
		5085.30 11	0.99 4	2830.53	$(1^+, 2, 3^+)$			7307.31 6	27.1 4	608.784	2+
		5139.86 23	0.54 4	2776.55	$(1^+, 2^+)$			7555.1 6	0.25 5	362.230	3+
		5152.11 13	0.81 4	2764.16	$(1^{-},2^{-})$			7572.32 8	5.26 9	343.897	1+
		5183.89 12	1.11 5	2732.30	$(0^+, 1, 2)$			7638.00 9	48.9 12	278.256	2+
		5190.09 8	2.02 5	2726.16	(3^+)			7/56.91 9	4.779	159.282	2+
		5258.67 7	3.11 7	2657.33	$(1^+,2)$	7016 429	2-	7916.26 8	100.0 18	0.0	1'
		5269.4 5	0.24 4	2647.97	(1^{+})	/916.438	2	4404	114	3510.55	(1,2)
		5280.67 17	0.76.5	2035.48	$(\leq 3^{+})$			4570	114	3343.98	$(0, 1, 2, 3^{+})$
		5321.5 J	0.17 3	2594.4	(1^{-})			4720	1/4	2071 5	(2^{-})
		5365 5 5409 99 11	0.05 5	2555.00	(2)			4044	94	20/1.5	(2)
		5408.88 11	5 50 0	2307.20	(≤ 3) (1.2 ⁺)			5140	11 4	2000.5	(3) (1+2+)
		5450 75 20	0.48.3	2497.30	(1,2) $(1-2^{-})$			5851	20 4	2064.5	(1,2)
		5528 2 3	$0.48 \ 3$ 0.37 4	2405.47	(1,2)			5866	14 4	2004.5	(≤ 4) $(1+2)3^{-})$
		5555 78 13	0.37 + 0.83 4	2360 50	(1)			5896	5924	2020.8	$(1^{+},2,3^{+})$
		5600 5 4	0.03 4	2316 50	$(\underline{\leq}5)$ $(1^{-}2^{-})$			5998	18 4 24	1917 4	$(2^{-}, 3^{-})$
		5615.01.9	1.49.5	2301.04	1+			6062	11.8.24	1852.65	$(1^+, 2^+)$
		5636.18 11	1.24 5	2279.76	1+			6136	3.6 24	1779.55	$(1^+, 2^+)$
		5771.48 13	1.54 7	2144.54	(2^+)			6233 ^e	<4.7	1683.126	$(1^+, 2^+)$
		5824 ^e 2	0.9	2092.24	$(1^+, 2^+, 3^+)$			6394	3.6 24	1521.148	$(2)^+$
		5866.16 22	0.44 3	2050.00	$(1^+, 2, 3^-)$			6418 ^e	<4.7	1499.20	$(2)^{-}$
		6010.83 7	4.80 9	1905.084	(2^{-})			6476 ^e	<4.7	1438.75	$(1)^{+}$
		6015.7 <i>3</i>	0.69 6	1900.28	(1^+)			6617	12 3	1298.121	$(1)^{+}$
		6063.65 9	1.83 5	1852.65	$(1^+, 2^+)$			6628	30 <i>3</i>	1287.15	$(1^+, 2, 3^-)$
		6136.05 19	0.60 4	1779.55	$(1^+, 2^+)$			6674	5.3 24	1241.087	$1^{(+)}, 2^{(+)}$
		6166.9 <i>3</i>	0.50 5	1749.2	(≤4)			6988	14 <i>3</i>	927.080	1+
		6233.0 4	0.33 4	1683.126	$(1^+, 2^+)$			7036	2.4 18	878.274	$(0)^{+}$
		6308.61 25	0.50 4	1607.30	$(2^+,3)$			7168	14 <i>3</i>	746.241	$(3)^+$
		6321.54 <i>13</i>	1.09 4	1594.39	$(1^+, 2)$			7176	41 <i>3</i>	739.050	2+
		6365.6 <i>3</i>	0.32 3	1550.49	$(1^+, 2^+, 3^+)$			7252	7.1 24	662.99	1+
		6394.86 6	4.21 8	1521.148	$(2)^{+}$			7307	8.9 24	608.784	2+
		6416.9 <i>4</i>	0.29 4	1499.20	$(2)^{-}$			7637	37 <i>3</i>	278.256	2+
		6477.15 23	0.52 4	1438.75	$(1)^{+}$			7756	100 4	159.282	2+
		6553 ^e 3	0.3	1363.17	$(1,2,3^+)$	7917.874	1-	3369.5 5	6.5 19	4549.48	$(0,1,2,3^{-})$
		6595.63 11	1.91 7	1320.335	$(1^+, 2^+, 3^+)$			3590.9 2	12.8 16	4327.41	$(1^+, 2^+)$
		6618.15 8	3.41 9	1298.121	$(1)^+$			3654.2 5	7.5 21	4264.07	$(1,2^+)$
		6628.9 5	0.30 5	1287.15	$(1^+, 2, 3^-)$			3884.8 6	3.8 14	4034.01	(1 ⁺)
		6674.85 6	6.01 9	1241.087	$1^{(+)}, 2^{(+)}$			4134.2 4	7.3 16	3783.16	$(1,2^+)$
		6988.96 <i>6</i>	10.60 15	927.080	1+			4206.2 3	9.6 14	3711.80	$(0^+, 1^+)$

 $\gamma(^{64}Cu)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
7917.874	1-	4290 2	1.0 10	3629.40	$(0,1,2,3^{-})$	7917.874	1-	7039.07 10	49.4 19	878.274	$(0)^{+}$
		4322.10 17	13.5 13	3596.00	(0,1,2)			7171.2 3	11.0 12	746.241	(3)+
		4407.21 6	5.3 17	3510.55	(1,2)			7178.21 12	51.1 21	739.050	2+
		4443.9 5	7.5 21	3475.20	$(0^+, 1, 2)$			7308.17 15	82 5	608.784	2+
		4453.1 15	2.1 18	3465.57	$(0^{-}, 1, 2, 3^{-})$			7555.1 4	4.9 7	362.230	3+
		4477.62 12	28.4 17	3440.18	$(0^+, 1, 2, 3^-)$			7573.6 3	7.9 10	343.897	1+
		4506.2 <i>3</i>	7.2 11	3412.12	$(1^{-},2^{-})$			7638.57 16	79 4	278.256	2+
		4564.7 6	3.0 9	3352.83	$(1,2,3^{-})$			7756.7 3	17.7 <i>17</i>	159.282	2+
		4604.6 4	4.5 10	3313.09	(0,1,2)			7917.09 11	63.8 21	0.0	1+
		4660.36 19	11.4 11	3257.55	$(1^+, 2^+)$	7918.469	2^{-}	6309	100 17	1607.30	$(2^+,3)$
		4710.4 <i>4</i>	4.6 11	3207.53	(0,1,2)			6322	100 17	1594.39	$(1^+, 2)$
		4792.56 14	33.0 21	3125.06	$(1^+, 2^+)$			6394	28 10	1521.148	$(2)^{+}$
		4805.6 6	3.8 13	3111.77	$(1^+, 2)$			6418 ^e	<29	1499.20	$(2)^{-}$
		4885.9 <i>4</i>	5.6 11	3033.56	(2^{-})			6553	23 20	1363.17	$(1,2,3^+)$
		4903.46 10	35.7 18	3013.30	$(1^{-},2^{-})$			6674 ^e	<75	1241.087	$1^{(+)}, 2^{(+)}$
		4984.4 <i>3</i>	7.5 10	2932.54	(2 ⁻)			7021	22 13	895.705	$(3)^{+}$
		5021.4 2	11.0 12	2896.79	(3 ⁺)			7168	49 15	746.241	$(3)^{+}$
		5140.9 <i>3</i>	6.2 7	2776.55	$(1^+, 2^+)$			7176	49 15	739.050	2+
		5185.4 <i>3</i>	6.9 10	2732.30	$(0^+, 1, 2)$			7307	28 13	608.784	2+
		5259.9 6	3.0 7	2657.33	$(1^+, 2)$			7556	75 13	362.230	3+
		5322.1 8	1.9 7	2594.4	(1^{+})			7571	35 10	343.897	1+
		5410.4 <i>3</i>	7.6 11	2507.26	(≤3)			7756 ^e	<23	159.282	2+
		5418.0 <i>12</i>	1.3 9	2497.58	$(1,2^{+})$			7916	77 15	0.0	1+
		5451.5 8	2.9 13	2465.47	$(1^{-}, 2^{-})$	(7938.49)	$(1,2,3^+)$	4153.3 6	7.9 23	3783.16	$(1,2^{+})$
		5529.9 <i>3</i>	8.6 <i>13</i>	2387.89	(1^{+})			4415.6 5	8.9 20	3524.64	$0^+, 1^+$
		5617.6 4	4.6 9	2301.04	1+			4445.2 7	5.6 20	3493.35	$(0^+, 1, 2, 3)$
		5637.1 4	4.8 9	2279.76	1+			4464.8 10	4.0 20	3475.20	$(0^+, 1, 2)$
		5772.89 17	14.8 12	2144.54	(2^{+})			4524.7 14	4.5 34	3412.12	$(1^{-},2^{-})$
		5866.2 6	2.9 9	2050.00	$(1^+, 2, 3^-)$			4625.6 8	5.2 18	3313.09	(0,1,2)
		6012.3 3	19.2 21	1905.084	(2^{-})			4682.6 7	9.0 34	3257.55	$(1^+, 2^+)$
		6017.74	11.7 18	1900.28	(1^+)			4855.6 8	4.9 18	3080.85	$(2^{-},3^{-})$
		6064.62 17	14.6 12	1852.65	$(1^+, 2^+)$			5043.1 9	7.9 34	2892.35	(1^+)
		6135.6 5	3.7 9	1779.55	$(1^+, 2^+)$			5111.0 13	4.5 23	2830.53	$(1^+, 2, 3^+)$
		6323.0 3	9.7 11	1594.39	$(1^{+},2)$			5292.1 14	4.5 23	2647.97	(1^{+})
		6396.3 2	26.3 20	1521.148	$(2)^{+}$			5344.8 5	11.2 20	2594.4	(1^{+})
		6417.86 10	59.6 21	1499.20	(2)			5409.8 8	6.9 21	2507.26	(- 2)
		64/8.8 4	11.4 1/	1438.75	$(1)^{+}$			5427.8 15	3.4 20	2507.26	(≤3)
		6596.82 10	100 4	1320.335	$(1^{+}, 2^{+}, 3^{+})$			5576.5 0	10.1 23	2360.50	(≤ 3)
		0019.32 10	40 3	1298.121	$(1)^{-}$			JO20.9 8	10.1 34	2310.50	(1,2) 1 ⁺
		0029.0 /	0.0 18	1287.13	$(1^{+}, 2, 3^{-})$			505/.0 5	24.7 23	2301.04	1
		00/3.98 10	6U 3	1241.087	1,2,1,2,1,1			5659.3 3 5702 7 2	19.1 23	22/9.76	(2^+)
		0989.9 0	3.5 9	927.080	1.			5/95./ 5	21.0 21	2144.54	(2^{+})
		1023.4 12	1.5 7	895.705	(3)'			5889.17	7.8 20	2050.00	(1',2,3)

$\gamma(^{64}Cu)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
(7938.49)	(1,2,3 ⁺)	$\begin{array}{c} 6036.4 \ 8\\ 6085.9 \ 4\\ 6160.3 \ 10\\ 6254.8 \ 3\\ 6344.5 \ 2\\ 6389.6 \ 5\\ 6416.9 \ 2\\ 6439.0 \ 4\\ 6501.6 \ 6\\ 6584.0 \ 4\\ 6618.3 \ 8\\ 6650.2 \ 4\\ 6695.8 \ 5 \end{array}$	10.1 34 20.2 23 7.9 23 25.8 23 33.7 23 31 5 58 5 28 3 25 5 16.9 23 10.1 34 16.9 23 37 5	1900.28 1852.65 1779.55 1683.126 1594.39 1550.49 1521.148 1499.20 1438.75 1354.25 1320.335 1287.15 1242.64	$\begin{array}{c} \hline (1^+) \\ (1^+,2^+) \\ (1^+,2^+) \\ (1^+,2^+) \\ (1^+,2^+,3^+) \\ (2)^+ \\ (2)^- \\ (1)^+ \\ (3)^+ \\ (1^+,2^+,3^+) \\ (1^+,2,3^-) \\ (0,1,2,3^+) \end{array}$	(7938.49)	(1,2,3 ⁺)	7010.85 15 7042.87 16 7060.8 12 7198.6 6 7275.7 2 7329.7 3 7360.8 15 7575.0 4 7595.6 5 7659.27 16 7778.44 17 7938.3 2	57 3 99 6 7.9 23 48 9 41.6 23 38 3 4.5 23 27 3 54 11 56 3 72 3 100 6	927.080 895.705 878.274 739.050 662.99 608.784 574.614 362.230 343.897 278.256 159.282 0.0	$\begin{array}{c} 1^{+} \\ (3)^{+} \\ (0)^{+} \\ 2^{+} \\ 1^{+} \\ 2^{+} \\ (4)^{+} \\ 3^{+} \\ 1^{+} \\ 2^{+} \\ 2^{+} \\ 1^{+} \end{array}$

[†] Primarily from ${}^{63}Cu(n,\gamma)$ E=th and ${}^{59}Co({}^{7}Li,pn\gamma)$. Values with uncertainties quoted from (p,n γ) are deduced from branching ratios in 1976Gr13.

[‡] From $\gamma(\theta)$ and $\gamma\gamma(\theta)$ in $(p,n\gamma)$; $\gamma(\theta)$ in $(\alpha,pn\gamma)$; and $\gamma\gamma(\theta)$ (ADO) and linear polarization in $(^{7}\text{Li},pn\gamma)$. M1+E2 favored over E1+M2 based on RUL for E2 and M2 transitions.

[#] Reported in $(p,n\gamma)$ only.

29

[@] Reported in $(d,p\gamma)$ only. I γ not available.

& Reported in (n,γ) E=th only.

^{*a*} From $\gamma\gamma$ -coin in (α ,pn γ) only.

^{*b*} From $\gamma(\theta)$ in $(\alpha, pn\gamma)$.

^c Poor fit in level scheme.

^d Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^e Placement of transition in the level scheme is uncertain.

Level Scheme Intensities: Relative photon branching from each level

⁶⁴₂₉Cu₃₅

12.7006 h 20

Legend

Level Scheme (continued) Intensities: Relative photon branching from each level γ Decay (Uncertain) ----2-7918.469 1-7917.874 I i (≤3) 2507.26 | _|_ $(1,2^+)$ I 2497.58 į. ÷. i. $(1^-, 2^-)$ 2465.47 1 i. (1^{+}) Ť. 2387.89 -|i 1^+ 2301.04 1 1^+ I. 2279.76 (2^+) 2144.54 + $(1^+,\!2,\!3^-)$ 2050.00 I. (2^{-}) 1905.084 (1+) T Т Т 1900.28 Ì. i. Ì. $(1^+, 2^+)$ 1852.65 1 i. i. $(1^+, 2^+)$ 1779.55 i. ÷ i. (2+,3) ¥ 1607.30 (1+,2) I. Т 1594.39 $(2)^+$ 1521.148 1 1 ¥ ¥ $(2)^{-}$ 1499.20 I. ۲ $(1)^{+}$ 1438.75 1 $(1,2,3^+)$ 1363.17 $(1^+, 2^+, 3^+)$ Ì. Ì. 1320.335 1 ÷. $(1)^{+}$ 1298.121 + (1+,2,3-) 1287.15 -1- $1^{(+)}, 2^{(+)}$ L 1241.087 ¥ 1^+ 927.080 <11 ps I $(3)^+$ 895.705 <20 ps i $(0)^{+}$ $<\!\!15\ ps$ 878.274 Т (3)+ 746.241 <13 ps 1 2+ 739.050 <11 ps ÷. 2^{+} 608.784 <9 ps I. 3+ 362.230 <4 ps 1^{+} 343.897 <4 psT 2^{+} 278.256 <9 ps ⊥ ▼ 159.282 21 ps 4 2^{+} 1^{+} 0.0

⁶⁴₂₉Cu₃₅

Level Scheme (continued)

64 29Cu₃₅

Legend

Level Scheme (continued)

 $--- \rightarrow \gamma$ Decay (Uncertain)

64 29Cu₃₅

⁶⁴₂₉Cu₃₅

Level Scheme (continued)

Intensities: Relative photon branching from each level

) 12.7006 h 20

 $^{64}_{29}Cu_{35}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{64}_{29}Cu_{35}$

Level Scheme (continued)

 $^{64}_{29}{
m Cu}_{35}$

Level Scheme (continued)

Level Scheme (continued)

⁶⁴₂₉Cu₃₅

Level Scheme (continued)

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{64}_{29}{
m Cu}_{35}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

⁶⁴₂₉Cu₃₅

Level Scheme (continued)

 $^{64}_{29}{
m Cu}_{35}$

⁶⁴₂₉Cu₃₅

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{64}_{29}{
m Cu}_{35}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

64 29Cu₃₅

Level Scheme (continued)

 $^{64}_{29}{
m Cu}_{35}$

Level Scheme (continued)

Level Scheme (continued)

 $^{64}_{29}{
m Cu}_{35}$

Level Scheme (continued)

⁶⁴₂₉Cu₃₅

Level Scheme (continued)

 $^{64}_{29}{
m Cu}_{35}$

Level Scheme (continued)

 $^{64}_{29}{
m Cu}_{35}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

⁶⁴₂₉Cu₃₅

 $^{64}_{29}{
m Cu}_{35}$

 $^{64}_{29}{
m Cu}_{35}$

Legend

 ${}^{64}_{29}{\rm Cu}_{35}$

Level Scheme (continued)

