⁵⁹Co(⁷Li,pnγ) 2018Sa02

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh and Jun Chen	NDS 178, 41 (2021).	12-Nov-2021				

⁶⁴Cu Levels

2018Sa02: $E(^7Li)=22-24$ MeV beam from the Pelletron-LINAC facility at TIFR-Mumbai. Target was 5.2 mg/cm² ⁵⁹Co evaporated on 4 mg/cm² thick Ta foil. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$ (ADO), $\gamma\gamma$ (linear polarization) using an array of 11 Compton-suppressed Clover Ge detectors. Comparisons with shell-model calculations, and deduced configurations.

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	J^{π}
0.0	1^{+}	1460.6 5	4-	2647.0 8	(5)	3798.5 6	9-
158.9 <i>3</i>	2^{+}	1592.7 5	6-	2689.8 7	6-	3986.2 8	9-
277.8 <i>3</i>	2+	1615.5 8	5-	2715.5 7	7-	4159.7 10	
342.2 4	1^{+}	1704.8 6	4^{+}	2810.8 7	6-	4162.8 9	
361.7 <i>3</i>	3+	1735.9 6	4+	2913.7 11	5-	4165.6 7	9-
574.0 4	4+	1769.7 6	5+	2924.4 6	6-	4268.1 8	
607.8 4	2+	1905.8 8	4+	2948.2 8	5-	4358.5 8	
662.4 4	1^{+}	1924.5 8		2964.2 8	5-	4550.5 10	
737.0 5	2^{+}	1978.6 8	5+	3049.8 8	7^{-}	4554.4 12	
745.5 <i>4</i>	3+	2018.3 7	4^{+}	3124.5 6	7^{-}	4566.9 8	10^{-}
774.1 6	(1)	2071.8 6	5-	3175.6 8		4689.9 12	
820.2 6	(4)	2090.6 5	4-	3189.6 6	8-	4896.9 10	10-
876.4 4	$(0)^{+}$	2251.1 8	5+	3267.1 8		5084.0 10	(9)
895.1 <i>3</i>	$(3)^{+}$	2321.5 7	5-	3277.2 9		5094.2 10	(9)
926.0 5	1^{+}	2376.3 6	7-	3350.2 10	6-	5685.0 10	(11)
1096.1 6	2+	2385.8 6	6-	3375.0 7	6-	5911.1 <i>12</i>	
1239.5 5	3+	2414.7 8		3487.1 7	8-	5916.0 <i>12</i>	(10)
1242.0 7		2435.4 8		3603.7 6	7^{-}	6068.7 <i>12</i>	(10)
1290.0 6	2^{+}	2496.9 7	5+	3680.1 11			
1353.3 5	4+	2516.9 7	5^{-}	3685.2 11	7^{-}		
1435.4 6	4+	2582.8 11	5-	3732.2 9			

[†] From a least-squares fit to γ -ray energies.

 $\gamma(^{64}Cu)$

ADO=Angular Distribution of γ rays from Oriented nuclei, defined by 2018Sa02 as: $I\gamma_1(140^\circ)$ (gated on γ_2 at all angles) / $I\gamma_1(115^\circ)$ (gated on γ_2 at all angles).

Expected values of ADO ratio R_{ADO} are 1.24 2 for pure quadrupole transitions, 0.81 *I* for pure dipole with gates on pure dipole transitions of 159 and 278 keV (2018Sa02). A value between 0.81 and 1.24 indicates mixed multipolarity with $\delta(Q/D)>0$, and a value <0.81 would indicate $\delta(Q/D)<0$.

Positive value of polarization (POL) indicates an electric nature and negative for magnetic, and a near-zero value represents a mixed (most likely M1+E2) transition (2018Sa02).

E_{γ}^{\dagger}	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
84.0 5	0.64 8	361.7	3+	277.8	2+
118.8 5		277.8	2^{+}	158.9	2^{+}
137.5 5		745.5	3+	607.8	2^{+}

[‡] As proposed in 2018Sa02, based on $\gamma\gamma(\theta)$ (ADO), $\gamma\gamma($ in pol) and comparison with shell-model calculations. Evaluators note that strong arguments for J^{π} assignments are generally missing in this work, thus assignments are either different in the Adopted Levels or treated as tentative.

⁵⁹Co(⁷Li,pnγ) 2018Sa02 (continued)

$\gamma(^{64}Cu)$ (continued)

E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	Comments
158.8 5		158.9	2+	0.0 1+		
200.1 5		3124.5	7-	2924.4 6-		
202.7 5	103.9 5	361.7	3+	158.9 2+		
212.1 5	100.0	574.0	4+	361.7 3+		
228.7 5		3603.7	7^{-}	3375.0 6-	D+Q	R _{ADO} =0.96 7.
249.8 5	2.74 5	2321.5	5-	2071.8 5-	(M1+E2)	R _{ADO} =0.83 3, POL=-0.22 25.
265.5 5		607.8	2^{+}	342.2 1+		
277.9 5		277.8	2^{+}	$0.0 \ 1^+$	(M1+E2)	R _{ADO} =1.00 47, POL=-0.13 16.
311.3 5		3798.5	9-	3487.1 8-	D	R _{ADO} =0.80 11.
313.4 5	1.99 10	2689.8	6-	2376.3 7-	D	$R_{ADO} = 0.85 \ 6.$
313.5 5	1.12 79	3124.5	7-	2810.8 6-	D+Q	$R_{ADO} = 0.93 6.$
313.6 5	0.97 69	2018.3	4+	1704.8 4+	D	$R_{ADO} = 0.87 \ 4.$
314.0 5	8.3 15	2385.8	6-	20/1.8 5-	D+Q	$R_{ADO} = 0.95 \ 10.$
320.6 5	1.89 15	895.1	$(3)^{+}$	574.0 4+	(D+Q) [@]	R _{ADO} =1.00 11.
342.2 5		342.2	1^{+}	$0.0 \ 1^+$		
361.7 5		361.7	3+	0.0 1+		
384.0 5	0.19 4	745.5	3+	361.7 3+	D	R _{ADO} =0.87 8.
384.6 5	1.95 23	662.4	1+	277.8 2+	D(+Q)	R _{ADO} =0.85 13.
402.0 5	0.86 14	3350.2	6-	2948.2 5	D+Q	$R_{ADO} = 0.99 \ 10.$
412.4 5	0.99 60	774.1	(1)	361.7 3+	Q	$R_{ADO} = 1.52 \ I3.$
415.1.5	3.36 55	574.0	4'	158.9 2		D 0.00 10
426.3 5	0.86 27	2516.9	5	2090.6 4	D+Q	$R_{ADO} = 0.83 \ I2.$
434.0 3	1.43 39	3124.5	/	2689.8 6	(M1+E2)	$R_{ADO} = 0.99$ /, $POL = -0.1$ / 2/.
458.5 5	2 16 27	820.2	(4)	$361.7 3^{+}$	D	$R_{ADO} = 0.86$ /.
439.03	2.10 37	737.0	2 · 2+	$211.8 2^{\circ}$	D (M1+E2)	$R_{ADO} = 0.70 \ 10.$
407.75	2.21 30	2406.0	5 5+	$2/7.0 \ 2$	(M1+E2)	$R_{ADO} = 0.69$ 5, $POL = -0.04$ 15.
478.0 5	0.80 15	2490.9	5	2018.3 4	D+Q	I_{γ} : uncertainty of 15.2 in Table I of 2018Sa02 seems a misprint, evaluators consider it as 1.52.
478.6 5	2.92 43	3603.7	7-	3124.5 7-		
479.2 5	13.8 15	2071.8	5-	1592.7 6-	(M1+E2)	R _{ADO} =0.87 3, POL=-0.15 22.
533.3 5	1.23 13	895.1	$(3)^{+}$	361.7 3+	D+Q	R _{ADO} =0.97 13.
534.2.5		876.4	$(0)^{+}$	342.2 1+	D [@]	$R_{ADO} = 0.67 \ 10.$
538.6 5	2.65 52	2924.4	6-	2385.8 6-		$R_{ADO} = 0.87 3$, POL=-0.31 26.
560.0 5	1.93 56	4358.5		3798.5 9-		
561.7 5		3277.2		2715.5 7-		
561.8 5	0.62 19	4165.6	9-	3603.7 7-		
562.4 5	1.59 28	2948.2	5-	2385.8 6-	D+Q	R _{ADO} =0.91 4.
565.3 5	1.31 43	1460.6	4-	895.1 (3)+		
575.2 5	1.45 4	2647.0	(5)	2071.8 5-	D+Q	R _{ADO} =0.69 <i>6</i> .
578.4 5		737.0	2^{+}	158.9 2+		
578.4 5	0.36 7	2964.2	5-	2385.8 6-	D+Q	R _{ADO} =0.66 5.
580.5 5		4566.9	10-	3986.2 9-		
607.7 5		607.8	2+	0.0 1+		
608.8 5	9.50 15	3798.5	9-	3189.6 8-	M1+E2	$R_{ADO} = 0.98 \ 2, \ POL = -0.24 \ 18.$
617.3 5	1.56 9	895.1	$(3)^{+}$	277.8 2+	D [@]	R _{ADO} =0.68 4.
629.7 5	2.22 20	2090.6	4-	1460.6 4-	D+Q	R _{ADO} =0.98 <i>6</i> .
662.5 5		662.4	1^{+}	0.0 1+		
664.0 5	1.39 25	3049.8	7-	2385.8 6-	M1+E2	R _{ADO} =0.93 <i>3</i> , POL=-0.54 <i>34</i> .
664.4 5	0.61 20	4268.1	_	3603.7 7-	5 6	
679.2 5	1.40 37	3603.7	7-	2924.4 6	D+Q	R _{ADO} =0.89 4.
738.5 5	1.15 10	3124.5	·/-	2385.8 6	D+Q	R _{ADO} =0.93 7.
//1.5 5	1.43 16	348/.1	8-	2/15.5 7	D+Q	$K_{ADO} = 0.92 0.$
789.8 5	18.2 11 1.00 18	2370.3 3175.6	/	1392.7 0 2385.8 6 ⁻	M1+E2	$\kappa_{ADO} = 0.717$, POL=-0.38 24.

Continued on next page (footnotes at end of table)

⁵⁹Co(⁷Li,pnγ) 2018Sa02 (continued)

$\gamma(^{64}Cu)$ (continued)

E_{γ}^{\dagger}	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	Comments
813.4.5	4 33 26	3189.6	8-	2376 3 7-	(M1 + E2)	$R_{ADO} = 0.90.3 \text{ POL} = -0.27.38$
861.3.5	0.84 31	1435.4	4 ⁺	574.0 4+	D+O	$R_{ADO} = 1.14 II.$
876.4.5		876.4	$(0)^+$	0.0 1+		
877.5 5		1239.5	3+	361.7 3+		
878.1 5		3375.0	6-	2496.9 5+	D+O	$R_{ADO} = 0.98 \ 6.$
881.3 5	0.39 7	3267.1		2385.8 6-	C C	
895.2 5		895.1	$(3)^{+}$	0.0 1+		
926.0 5		926.0	1+	0.0 1+		
937.2 5	0.60 44	1096.1	2^{+}	158.9 2+	D+Q	R _{ADO} =0.89 13.
947.7 5		1290.0	2^{+}	342.2 1+	D	R _{ADO} =0.81 24.
959.3 <i>5</i>	1.61 6	1704.8	4+	745.5 3+	(M1+E2)	R _{ADO} =0.77 2, POL=-0.29 29.
962.0 5		1239.5	3+	$277.8 2^+$		
991.5 5	4.60 12	1353.3	4+	361.7 3+	(M1+E2)	R _{ADO} =1.12 5, POL=-0.5 22.
1018.9 7	71.06 42	1592.7	6-	574.0 4+		
1040.7 7	1.70 14	2810.8	6-	1769.7 5+	D	R _{ADO} =0.80 8.
1041.4 7	1.93 9	1615.5	5-	574.0 4+	D+Q	R _{ADO} =0.93 5.
1075.7 7		1353.3	4+	$277.8 \ 2^+$		
1098.4 7	3.01 78	4896.9	10-	3798.5 9-	(M1+E2)	$R_{ADO} = 1.02 4$, POL=-0.33 43.
1098.9 7	1.59 83	1460.6	4-	361.7 3+	D+Q	R _{ADO} =0.89 8.
1122.6 7	8.09 12	2715.5	7-	1592.7 6-	D+Q	R _{ADO} =1.02 7.
1161.6 7	4.27 28	1735.9	4+	574.0 4+	(M1+E2)	$R_{ADO} = 0.68 \ 2, \ POL = -0.02 \ 57.$
1195.5 7	2.19 9	1769.7	5+	574.0 4+		
1195.6 7	1.07 14	2090.6	4-	895.1 (3)+		
1218.4 7	1.22 26	3603.7	7-	2385.8 6-	(M1+E2)	$R_{ADO} = 0.95 4$, POL = $-0.29 73$.
1231.2 ^{‡&} 7	0.74 7	1592.7	6-	361.7 3+	[E3]	
1242.0 7		1242.0		$0.0 \ 1^+$		
1282.4 7	1.44 21	3603.7	7-	2321.5 5-	(E2+M3)	R _{ADO} =1.13 5, POL=+0.9 14.
1314.7 ^{‡&} 7	2.24 64	1592.7	6-	$277.8 2^{+}$	[M4]	$R_{ADO} = 0.78 \ 4.$
1331.7 7	3.62 50	1905.8	4+	574.0 4+	D+Q	$R_{ADO} = 0.97 \ 4.$
1350.4 7	0.69 14	1924.5		574.0 4+		
1355.9 7	0.75 16	3732.2		2376.3 7-		
1360.9 7	0.72 16	4550.5		3189.6 8-		
1374.4 7	0.62 17	1735.9	4+	361.7 3+		
1377.7 7	2.58 23	4566.9	10-	3189.6 8-	(E2)	R _{ADO} =1.16 7, POL=+1.1 18.
1407.8 7	2.10 9	1769.7	5+	361.7 3+	Q	R _{ADO} =1.13 <i>12</i> .
1422.4 7	1.15 7	3798.5	9-	2376.3 7-	Q	R _{ADO} =1.18 9.
1469.9 7	0.28 6	4159.7		2689.8 6-		
1517.0 7	0.84 7	2090.6	4-	574.0 4+	D+Q	R _{ADO} =0.76 7.
1531.9 7	1.32 3	3603.7	7-	$2071.8 5^{-}$		Mult.: E2+M3 in 2018Sa02.
						$R_{ADO}=0.57$ 3, POL=+0.8 20. Note that R_{ADO} is
						inconsistent with Mult=E2+M3 in 2018Sa02.
1596.6 7	11.74 16	3189.6	8-	1592.7 6	(E2+M3)	$R_{ADO} = 1.10 I$, POL=2.3 43.
1609.5 7	4.90 13	3986.2	9- -	2376.3 7=	(E2)	$R_{ADO} = 1.25 2$, POL=+0.9 19.
1616.8 7	4.32 13	1978.6	5	361.7 3+	Q	$R_{ADO} = 1.22 4.$
16/7.0 7	2.50 12	2251.1	5-	574.0 4+	(M1+E2)	$R_{ADO} = 1.04 \ 3, \ POL = -0.3 \ 29.$
1/86.5 /	0.26 13	4162.8	0-	2376.3 7	0	D 10(/
1/89.5 /	1.80 19	4165.6	9	23/6.3 /	Q	$R_{ADO} = 1.26 4.$
1040.0 /	0.44 J	2414./		$5/4.04^{\circ}$		
1801.3 /	1.02.0	2455.4	(11)	5/4.0 4'	0	$\mathbf{P} = -1.22 I0$
1000.4 /	$0.52\ 10$	5083.U	(11)	5/98.5 9 2100 6 9-	V D O	$\kappa_{ADO} = 1.55 \ IU.$
1094.4 /	2.20 33	5004.2	(9)	3189.0 8 2180.6 8-	D+Q	$K_{ADO} = 1.03 \delta.$
1904.0 /	0.00 0	JU94.2	(9)	5109.0 8	D+Q	$R_{ADO} = 0.94 \ 22.$
2006.7 10	0.22 /	2002.0 3680 1	5	1502 7 6-	D+Q	KADO-0.90 J.
2007.4 10	0.30 4	3685 2	7-	1592.7 0	$D \pm O$	$R_{+D0} = 0.90.8$
2092.5 10	0.40 J	5005.2	/	1374.1 0	DTQ	\mathbf{R} ADO-0.20 O.

Continued on next page (footnotes at end of table)

⁵⁹Co(⁷Li,pnγ) 2018Sa02 (continued)

$\gamma(^{64}Cu)$ (continued)

E_{γ}^{\dagger}	Iγ	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [#]	Comments
2112.5 10		5911.1		3798.5 9-		
2117.4 10	0.38 5	5916.0	(10)	3798.5 9-	D+Q	R _{ADO} =1.07 13.
2178.0 10		4554.4		2376.3 7-		
2206.4 10	0.65 6	3798.5	9-	1592.7 6-	[M3]	
2270.1 10	0.38 5	6068.7	(10)	3798.5 9-	D+Q	R _{ADO} =0.71 3.
2313.5 10		4689.9		2376.3 7-		
2339.6 10		2913.7	5-	574.0 4+	D	R _{ADO} =0.82 4.

[†] Uncertainty is stated by 2018Sa02 as 0.5 keV for $E\gamma < 1$ MeV, 0.7 keV for $E\gamma = 1-2$ MeV and 1 keV for $E\gamma > 2$ MeV.

[‡] Placement from the 1592.7, 6⁻ level to 2⁺ or 3⁺ levels requires high Mult, which is considered questionable by evaluators. It is very likely that the transition corresponds to the transition with a close energy from 1594, $(1^+, 2)$ level as seen in $(d, p\gamma)$ and adopted in Adopted Levels.

[#] Deduced by 2018Sa02 based on $\gamma\gamma$ (ADO) and $\gamma\gamma$ (lin pol). In most cases, experimental polarization asymmetries overlap zero value, making the magnetic or electric character uncertain. Evaluators treat such assignments as tentative, even though authors' assignments are firm.

[@] Deduced by evaluators based on R_{ADO} ratio as compared to assignments with similar R_{ADO} ; not given in 2018Sa02.

& Placement of transition in the level scheme is uncertain.

⁵⁹Co(⁷Li,pnγ) 2018Sa02

 $^{64}_{29}{
m Cu}_{35}$

⁵⁹Co(⁷Li,pnγ) 2018Sa02

 $^{64}_{29}{
m Cu}_{35}$

 $^{64}_{29}{
m Cu}_{35}$

 $\frac{2^+}{4^+}$

3+

 $\frac{1}{2}$

 $\frac{2^+}{1^+}$

0.0

⁶⁴₂₉Cu₃₅