¹⁹⁸**Pt**(⁷⁶**Ge,X** γ) **2000As05**

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Balraj Singh and Jun Chen	NDS 178, 41 (2021).	12-Nov-2021						

2000As05 (also 2001Is02): E=8 MeV/nucleon. Measured E γ , γ (t), $\gamma\gamma$, (projectile-like fragment)(γ)(t), $\gamma(\theta)$ using Ge detector for γ rays and Si Δ E-E silicon-strip detector for fragments.

Mass identification is within one unit, but the first excited state in 63 Co is at 995 keV and in 65 Co at \approx 1200 keV, thus the isomer observed at 834 is assigned to 64 Co.

⁶⁴Co Levels

$E(level)^{\dagger}$	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	(1 ⁺)		E(level): assumed as the g.s. by 2000As05 based on level spacings of the 867, 804, 703, 463 and 0 levels in (t, ³ He) (1972F117) being similar to the 64-97-232-441 cascading γ -ray energies from the 6.4-ns isomer, and non-observation of a 33 keV group in (t, ³ He).
441.1 <i>3</i> 672.9 <i>3</i> 769.9 <i>4</i> 833.6 <i>5</i>	$(2^+,3^+)$ (3^+) (4^+) (5^+)	6.4 ns <i>3</i>	$T_{1/2}$: from (projectile-like-fragment) γ (t) (2000As05).

[†] From a least-squares fit to $E\gamma$ data.

[‡] As proposed by 2000As05 based on γ -ray multipolarity assignments and model considerations. The assignments for excited states are the same in Adopted Levels.

γ(⁶⁴Co)

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [†]	α^{\ddagger}	Comments
63.7 5	71 6	833.6	(5 ⁺)	769.9	(4 ⁺)	(M1)	0.138 4	α (K)=0.124 4; α (L)=0.0126 4; α (M)=0.00176 5; α (N)=7.57×10 ⁻⁵ 20
97.0 5	83 5	769.9	(4 ⁺)	672.9	(3 ⁺)	(M1)	0.0441 9	$\alpha(K)=0.0395 \ 8; \ \alpha(L)=0.00397 \ 8; \ \alpha(M)=0.000554$ 11; $\alpha(N)=2.41\times10^{-5} \ 5$
160.7 5	62	833.6	(5 ⁺)	672.9	(3 ⁺)	[E2]	0.0866 16	α (K)=0.0774 <i>15</i> ; α (L)=0.00803 <i>15</i> ; α (M)=0.001109 <i>21</i> ; α (N)=4.42×10 ⁻⁵ 8
231.8 3	55 <i>3</i>	672.9	(3^{+})	441.1	$(2^+, 3^+)$	(M1)		
328.7 4	51	769.9	(4+)	441.1	$(2^+, 3^+)$			
441.0 3	63 4	441.1	(2+,3+)	0.0	(1+)			Mult.: anisotropy suggests $\Delta J=2$, E2, which is consistent with only the 3 ⁺ assignment by 2000As05, not 2 ⁺ . However, no data for anisotropy measurements are available.
673.0 <i>3</i>	37 <i>3</i>	672.9	(3 ⁺)	0.0	(1^{+})	(E2)		

[†] From asymmetry ratio of γ intensities in the reaction plane and out of the reaction plane. Parity is not determined by this ratio, but stretched quadrupole transitions are most likely E2 transitions. The stretched dipole ($\Delta J=1$) transitions are considered by 2000As05 as M1. The measured values of γ -ray asymmetry ratios are not listed by 2000As05, thus all assignments are considered as tentative by the evaluators.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

⁶⁴₂₇Co₃₇