⁶³Ga ε + β ⁺ decay 1971GiZP,1970Du05

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 196,17 (2024)	30-Sep-2023

Parent: ⁶³Ga: E=0.0; $J^{\pi}=3/2^{-}$; $T_{1/2}=32.1$ s 5; $Q(\varepsilon+\beta^{+})=5666.3\ 20;\ \%\varepsilon+\beta^{+}\ decay=100$

 63 Ga-J^{π}, T_{1/2}: From Adopted Levels of 63 Ga. T_{1/2} values from this dataset: 31.4 s 8 (1970Du05), 32.4 s 5 (1971GiZP).

1971GiZP (also 1971GiZS,1971GiZX same thesis): ⁶³Ca source was produced via ⁶⁴Zn(p,2n) with 30 MeV proton from the Michigan State University Sector-Focused Cyclotron. *γ* rays were detected with Ge(Li) detectors. Measured E*γ*, I*γ*, *γγ*-coin, *γ*(t). Deduced levels, J, *π*, parent T_{1/2}, decay branching ratios, log *ft*. Comparisons with available data. See also 1974FiZF and 1973FiZT from the same lab for a measurement of end-point energy using a pilot-B plastic scintillator and the same source.

1970Du05 (also 1971DuZV thesis): ⁶³Ga source was produced via ⁶⁴Zn(p,2n) with 28 MeV proton beam from the AVF cyclotron of the "Vrije Universiteit" at Amsterdam. Irradiated foils were transported to the spectrometers, where γ rays were detected with Ge(Li) detectors. Measured E γ , I γ , γ (t). Deduced levels, J, π , parent T_{1/2}, decay branching ratios, log *ft*. Comparisons with available data.

This decay scheme is considered incomplete by the evaluator due to a large gap of about 4 MeV between Q-value=5665.3 20 and the highest observed level at E=1692, implying possible unobserved γ transitions from unobserved levels in this large gap.

⁶³Zn Levels

E(level) [†]	J ^{π‡}
0.0	3/2-
192.93 19	$5/2^{-}$
247.89 19	$1/2^{-}$
627.04 17	$1/2^{-}$
637.05 19	$3/2^{-}$
650.09 19	$5/2^{-}$
1065.20 38	$1/2^{-}$
1395.49 20	$3/2^{-}$
1691.62 36	$5/2^{-}$

[†] From a least-squares fit to γ -ray energies.

[‡] From Adopted Levels.

ε, β^+ radiations

The quoted decay intensities and log ft values should be considered as approximate due to incomplete decay scheme.

E(decay)	E(level)	$I\beta^+$ ‡	$\mathrm{I}\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(3974.7 23)	1691.62	3.5	0.09	5.3	3.6	av E β =1326.96 97; ε K=0.022818 46; ε L=0.0025154 51; ε M+=4.4747×10 ⁻⁴ 91
(4270.8 23)	1395.49	6.9	0.14	5.2	7.0	av E β =1467.88 96; ϵ K=0.017235 31; ϵ L=0.0018994 35; ϵ M+=3.3788×10 ⁻⁴ 62
(4601.1 23)	1065.20	2.6	0.04	5.9	2.6	av E β =1625.90 98; ε K=0.012963 22; ε L=0.0014282 24; ε M+=2.5405×10 ⁻⁴ 43
(5016.2 23)	650.09	5.2	0.06	5.8	5.3	av E β =1825.48 97; ϵ K=0.009383 14; ϵ L=0.0010335 15; ϵ M+=1.8383×10 ⁻⁴ 27
(5029.3 23)	637.05	11.3	0.12	5.4	11.4	av E β =1831.80 97; ϵ K=0.009293 14; ϵ L=0.0010235 15; ϵ M+=1.8206×10 ⁻⁴ 27
(5039.3 23)	627.04	8.2	0.09	5.6	8.3	av E β =1836.63 97; ϵ K=0.009225 14; ϵ L=0.0010160 15; ϵ M+=1.8072×10 ⁻⁴ 27
(5418.4 23)	247.89	2.7	0.022	6.3	2.7	av E β =2019.82 97; ε K=0.0070717 95; ε L=7.787×10 ⁻⁴ 11;

Continued on next page (footnotes at end of table)

⁶³Ga-Q(ε + β ⁺): From 2021Wa16.

$^{63}{\rm Ga}\,\varepsilon\text{+}\beta^+$ decay 1971GiZP,1970Du05 (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	$\mathrm{I}\beta^+$ ‡	Ιε [‡]	Log ft	$I(\varepsilon + \beta^+)^{\dagger\ddagger}$	Comments
(5473.4 23)	192.93	4.7	0.036	6.0	4.7	ε M+=1.3850×10 ⁻⁴ <i>19</i> av E β =2046.47 <i>97</i> ; ε K=0.0068170 <i>91</i> ; ε L=7.506×10 ⁻⁴ <i>10</i> ; ε M+=1.3351×10 ⁻⁴ <i>18</i>
(5666.3 25)	0.0	<54	<0.37	>5.1	<54	av $E\beta$ =2140.01 97; εK =0.0060153 77; εL =6.6226×10 ⁻⁴ 84; εM +=1.1779×10 ⁻⁴ 15 I(ε + β ⁺): from 100- Σ %I(ε + β ⁺ to excited levels). Due to possible unobserved feedings to unobserved levels in the large energy gap between the highest observed level and Q-value, the quoted value here should be probably considered as an upper limit, while the feeding to g.s. is considered strong as allowed decay by the evaluator.

[†] From γ-ray intensity balance at each level for excited levels, assuming conversion electron intensities are negligible because of small conversion coefficients less than 1%.
 [‡] Absolute intensity per 100 decays.

$\gamma(^{63}Zn)$

I γ normalization: From measured I(γ^{\pm})/I(627 γ +637 γ +650 γ)=7.5 *12* (1970Du05), where I(γ^{\pm}) is the measured intensity of 511 γ from β^+ - β^- annihilation and is 2 times of the total ε + β^+ decay intensity, considering negligible contributions from ε decay ($\varepsilon/\beta^+ \approx 0.007$ to 0.02 for observed branches).

${\rm E_{\gamma}}^{\#}$	I_{γ} #@	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{\dagger}	Comments
193.0 2	51.4 35	192.93	$5/2^{-}$	0.0	3/2-	M1+E2	-0.06 3	0.01110 25	%Iy=5.8 10
									α (K)=0.00992 22; α (L)=0.001021 24; α (M)=0.0001464 34
									$\alpha(N) = 5.78 \times 10^{-6} \ 12$
247.0.2	20 6 20	247.90	1/2-	0.0	2/2-	$(\mathbf{M}_1, \mathbf{E}_2)$		0.014.9	E_{γ} : other: 192.9 2 (1970Du05).
247.9 2	30.0 20	247.89	1/2	0.0	3/2	(M1+E2)		0.014 8	$\%_{1\gamma} = 3.5 \ 0$
									$\alpha(N) = 0.0127, \alpha(L) = 0.00138, \alpha(M) = 1.9 \times 10^{-11}$ $\alpha(N) = 7 F = 6.4$
									E_{α} : weighted average of 248.0 2 (1971GiZP) and 247.8 2
									(1970Du05).
389.8 7	3.4 17	637.05	3/2-	247.89	$1/2^{-}$	M1+E2	-0.05 + 3 - 4	$1.97 \times 10^{-3} 3$	%Iγ=0.39 20
									$\alpha(K)=0.001766\ 29;\ \alpha(L)=0.0001787\ 29;\ \alpha(M)=2.56\times10^{-5}\ 4$
									$\alpha(N) = 1.027 \times 10^{-6} \ 16$
415.0 <i>13</i>	2.6 15	1065.20	$1/2^{-}$	650.09	5/2-	[E2]		0.00362 6	%Iy=0.29 18
									$\alpha(K)=0.00323\ 6;\ \alpha(L)=0.000333\ 6;\ \alpha(M)=4.76\times10^{-5}\ 8$
								2	$\alpha(N) = 1.830 \times 10^{-6} 32$
457.9 6	5.4 14	650.09	5/2-	192.93	5/2-	M1+E2	-0.08 + 1 - 2	$1.36 \times 10^{-3} 2$	%Ιγ=0.61 19
									$\alpha(K)=0.001221 \ 18; \ \alpha(L)=0.0001231 \ 18; \ \alpha(M)=1.766\times10^{-5}$
									$\alpha(N) = 7.09 \times 10^{-7} 10$
627.1 2	92 5	627.04	$1/2^{-}$	0.0	3/2-				$\% 1\gamma = 10.4 \ 17$
637 0 2	100	637.05	3/2-	0.0	3/2-	M1 + E2	10.04.2	0.000647.0	E_{γ} : other: 62/.1 2 (19/0Du05).
037.0 2	100	037.03	5/2	0.0	5/2	WITTE2	+0.04 2	0.000047 9	$\alpha(K) = 0.000581.8$; $\alpha(L) = 5.82 \times 10^{-5}.8$; $\alpha(M) = 8.35 \times 10^{-6}.12$
									$\alpha(N) = 3.36 \times 10^{-7} 5$
									E_{γ} : other: 637.1 2 (1970Du05).
650.0 2	44.0 25	650.09	$5/2^{-}$	0.0	3/2-	M1+E2	-0.57 3	0.000689 11	$\%$ I γ =5.0 9
									$\alpha(K)=0.000618 \ 10; \ \alpha(L)=6.22\times 10^{-5} \ 10; \ \alpha(M)=8.91\times 10^{-6}$
									15
									$\alpha(N)=3.57\times10^{-7} 6$
									E_{γ} : weighted average of 650.1 2 (1971GiZP) and 649.9 2
769 5 3	10 0 22	1205 40	2/2-	(27.04	1/2-	MIED		0.00050.7	(19'/0Du05).
/08.5 2	19.0 25	1395.49	3/2	627.04	1/2	MIT+E2		0.00050 /	$\%_{1}\gamma_{=2,2,3}$
									$\alpha(\mathbf{N}) = 0.00045 0; \alpha(\mathbf{L}) = 4.5 \times 10^{-5} 0; \alpha(\mathbf{M}) = 0.5 \times 10^{-5} 9$

 $\boldsymbol{\omega}$

6						decay 1971Gi	ZP,1970Du05 (c	continued)		
	γ ⁽⁶³ Zn) (continued)									
${\rm E_{\gamma}}^{\#}$	Ι _γ #@	E _i (level)	J_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α^{\dagger}	Comments		
1054.6 9	2.3 12	1691.62	5/2-	637.05 3/2-	[M1,E2]		0.000242 18	%Iγ=0.26 14 α (K)=0.000217 16; α (L)=2.17×10 ⁻⁵ 17; α (M)=3.11×10 ⁻⁶ 24 α (N)=1.25×10 ⁻⁷ 9		
1065.2 <i>4</i>	20 4	1065.20	1/2-	0.0 3/2-	[M1,E2]		0.000237 17	$%I\gamma = 2.3 6$ $\alpha(K) = 0.000212 \ 15; \ \alpha(L) = 2.12 \times 10^{-5} \ 16; \ \alpha(M) = 3.04 \times 10^{-6} \ 23$ $\alpha(N) = 1.22 \times 10^{-7} \ 8$ E.: other: 1065 1 6 (1970Du05)		
1147.0 8	3.1 7	1395.49	3/2-	247.89 1/2-	(M1+E2)		0.000204 13	% Virtual 1005110 (1970) 200		
1203.4 20	2.4 12	1395.49	3/2-	192.93 5/2-	(M1+E2)		0.000190 11	$\%$ I γ =0.27 <i>14</i> α (K)=0.000164 <i>9</i> ; α (L)=1.63×10 ⁻⁵ <i>9</i> ; α (M)=2.34×10 ⁻⁶ <i>13</i> α (N)=9.4×10 ⁻⁸ 5: α (IPF)=7.9×10 ⁻⁶ <i>13</i>		
1395.4 <i>3</i>	37 7	1395.49	3/2-	0.0 3/2-	M1+E2	+0.40 +14-12	0.0001723 32	%Iγ=4.2 11 α(K)=0.0001177 18; $α$ (L)=1.169×10 ⁻⁵ 18; $α$ (M)=1.676×10 ⁻⁶ 26 α(N)=6.80×10 ⁻⁸ 11; $α$ (IPF)=4.12×10 ⁻⁵ 13 E _v : other: 1395.5 5 (1970Du05).		
1498.5 6	2.9 15	1691.62	5/2-	192.93 5/2-	(M1+E2)		0.000193 14	$\%_{1\gamma=0.33} 18$ $\alpha(K)=0.000105 4; \alpha(L)=1.05\times10^{-5} 4; \alpha(M)=1.50\times10^{-6} 6$ $\alpha(N)=6.06\times10^{-8} 21; \alpha(IPF)=7.6\times10^{-5} 10$		
1691.7 <i>5</i>	27 5	1691.62	5/2-	0.0 3/2-	M1+E2	-0.10 3	0.0002234 <i>31</i>	$%I\gamma = 3.1 \ 8$ $\alpha(K) = 8.12 \times 10^{-5} \ 11; \ \alpha(L) = 8.05 \times 10^{-6} \ 11; \ \alpha(M) = 1.154 \times 10^{-6} \ 16$ $\alpha(N) = 4.69 \times 10^{-8} \ 7; \ \alpha(IPF) = 0.0001330 \ 19$ E_{γ} : other: 1691.8 10 (1970Du05).		

4

[†] Additional information 1.
[‡] From Adopted Gammas.
[#] From 1971GiZP, unless otherwise noted.
[@] For absolute intensity per 100 decays, multiply by 0.113 *19*.

 $^{63}_{30}{
m Zn}_{33}$ -4

 $_{30}^{63}\mathrm{Zn}_{33}$ -4

⁶³Ga ε + β ⁺ decay 1971GiZP,1970Du05

