⁶³Cu(**p**,**n**γ) **1982Pa01**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 196,17 (2024)	30-Sep-2023

1982Pa01: E=5-7.8 MeV proton beams were produced from the T11/25 tandem Van de Graaff accelerator of the Nuclear Research Center Demokritos. Target was 3.8 mg/cm² self-supporting 99.7% enriched ⁶³Cu. γ rays were detected with Ge(Li) detectors. Measured E γ , I γ , $\gamma(\theta)$, $\gamma\gamma$ -coin, Doppler-shift attenuation. Deduced levels, J, π , T_{1/2}, γ -ray branching ratios, mixing ratios, transition strengths. Comparisons with available data.

1978Me17: E=6 MeV proton beam was produced from the McMaster FN tandem. Target was natural metallic copper. γ rays were detected with Ge(Li) detectors. Measured E γ , I γ . Deduced levels. 1978Me17 also report data on ⁶⁰Ni(α ,n γ), ⁵⁴Fe(¹²C,2pn γ). All E γ data from the three measurements are combined by 1978Me17 and are all presented by the evaluator in ⁶⁰Ni(α ,n γ) dataset together with $\gamma(\theta)$ data in that measurement.

Others:

1975Ro25: E=10 MeV at Amsterdam. Measured $193\gamma(t)$.

1968Bi03,1968Bi01: E=4.6-5.2 MeV at Hebrew University. Measured $\gamma(\theta)$ of 190 γ . See also 1967Bi04 with E=7.0-7.8 MeV and 1966Bi07 with E=4-9 MeV.

1967Me18: E=5.8 MeV at Zurich. Measured E γ , I γ , E(ce), I(ce), $\gamma(\theta)$. Deduced conversion coefficient, mixing ratio of 193 γ .

⁶³Zn Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	Comments
0.0	3/2-		J^{π} : from Adopted Levels.
192.912 39	5/2-	<1.8 ns	J^{π} : 5/2 from $\gamma(\theta)$ in 1982Pa01, 1968Bi03, and 1967Me18.
			$T_{1/2}$: from 193 γ (t) in 1975Ro25.
247.84 5	1/2		J^{π} : from $\gamma(\theta)$ of 247.8 γ to g.s. and 1036.3 γ from 1284 level.
627.11 6	1/2,3/2,5/2		
637.07 5	1/2,3/2	>0.53 ps	$T_{1/2}$: from $\tau > 760$ fs.
650.112 40	5/2-	>0.28 ps	J^{π} : parity from 1210.7 γ E2 from 9/2 ⁻ .
			$T_{1/2}$: from $\tau > 400$ fs.
1023.23 5	3/2-	>0.35 ps	$T_{1/2}$: from $\tau > 500$ fs.
1063.25 7	7/2-	>0.29 ps	J^{π} : parity from 1063.2 γ E2 to 3/2 ⁻ .
			$T_{1/2}$: from $\tau > 420$ fs.
1065.24 10	5/2	>0.22 ps	J^{π} : $1/2^{-}$ in Adopted Levels.
			$T_{1/2}$: from $\tau > 320$ fs.
1206.36 7	7/2-	>0.42 ps	J^{π} : parity from 1206.3 γ E2 to 3/2 ⁻ .
			$T_{1/2}$: from $\tau > 600$ fs.
1284.26 6	5/2	>0.40 ps	$T_{1/2}$: from $\tau > 580$ fs.
1395.44 10	3/2-	0.13 ps $+6-3$	J^{π} : parity from 1395.4 γ M1+E2 to 3/2 ⁻ .
			$T_{1/2}$: from $\tau = 190$ fs +80–50.
1436.21 11	9/2-	>0.30 ps	J^{π} : parity from 1243.3 γ E2 to 5/2 ⁻ .
1			$T_{1/2}$: from $\tau > 440$ fs.
1664.90 9	3/2,5/2,7/2	0.26 ps + 12 - 8	$T_{1/2}$: from $\tau = 3/0$ fs +180–110.
1691.22 9	$5/2^{-}$	0.062 ps + 19 - 14	J^{n} : parity from 1691.2 γ M1+E2 to 3/2 ⁻ .
	T (R) (R		$T_{1/2}$: from $\tau = 90$ fs +27-20.
1702.91 10	5/2,9/2	>0.25 ps	$T_{1/2}$: from $\tau > 360$ fs.
1860.81 14	9/2-	0.33 ps + 70 - 15	$J^{\prime\prime}$: parity from 797.5γ M1+E2 to $7/2^{-1}$.
1000 04 10	5 10	0.00	$T_{1/2}$: from $\tau = 480$ fs $\pm 1000 - 220$.
1909.26 13	5/2	>0.28 ps	J^{n} : $3/2$ in Adopted Levels.
1070 40 10		0.10 7.5	$I_{1/2}$: from $\tau > 400$ fs.
19/8.40 19	3/2,5/2,1/2	0.19 ps + 7 - 3	$\Gamma_{1/2}$: from $\tau = 2/0$ is $+100-70$.
2050.38 19	9/2	>0.31 ps	$I_{1/2}$: from $\tau > 450$ fs.
2158.10 22	3/2	0.028 ps + 14 - 10	J [*] : pairty from 1910.4 γ M1+E2 to 5/2.
2240.00.15	510 710	0 17 . 7 5	$1_{1/2}$: Irom $\tau = 40$ IS $+ 20 - 14$.
2249.99 15	5/2, 1/2	0.1/ ps + /-3	$1_{1/2}$: Irom $\tau = 240$ IS $\pm 100 - 70$.
2201.53 1/	(3/2)	0.07 ps + 3 - 2	$1_{1/2}$: Irom $\tau = 95$ IS $+45 - 20$.
2288.32 17	1/2	>0.21 ps	$\Gamma_{1/2}$: from $\tau > 300$ fs.

Continued on next page (footnotes at end of table)

63 Cu(p,n γ) 1982Pa01 (continued)

⁶³Zn Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #		Comments
2291.47 15	3/2	0.06 ps +3-2	$T_{1/2}$: from $\tau = 93$ fs +37-27.	
2292.98 30	3/2	0.030 ps +15-10	$T_{1/2}$: from $\tau = 43$ fs $+ 22 - 15$.	
2377.81 22	7/2,9/2	>0.21 ps	J^{π} : 7/2,9/2 from $\gamma(\theta)$ in 1982Pa01.	
			$T_{1/2}$: from $\tau > 300$ fs.	
2403.28 19	1/2,3/2,5/2	0.11 ps + 7 - 4	$T_{1/2}^{1/2}$: from τ =160 fs +100-60.	
2522.10 15			-/-	
2600.09 27				
2609.12 36				
2634.52 22				
2690.9 10				
2750.72 34				

[†] From a least-squares fit to γ-ray energies.
[‡] Spin from γ(θ) in 1982Pa01, unless otherwise noted.
[#] From DSAM in 1982Pa01, unless otherwise noted.

A₂ and A₄ values are from 1982Pa01, unless otherwise noted.

ω

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	Comments
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	192.912	5/2-	192.94 6	100	0.0	3/2-	M1+E2	-0.08 + 3 - 4	$A_2 = -0.12 I$; $A_4 = +0.003 I$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		- 1				- /			$A_2 = -0.105 \ I9; A_4 = -0.014 \ 25 \ (1968Bi03)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									A_2^{2} = +0.078 9; A_4 = -0.014 10 (1967Me18)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									Mult.: D+Q from $\gamma(\theta)$, not pure E1 or pure E2 from ce data in 1967Me18.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									δ: from -0.08 +3-4 or -2.5 +2-3 (1982Pa01), with the smaller value adopted by the evaluator from comparisons with earlier values: -0.07 3 (1968Bi03), 0.4 1 (1967Me18), 0.3 2 (1978Me17).
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									$K/(L+M)=7.41 \ 11 \ (1967Me18).$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									$\alpha_{\rm K}(\exp)=0.00886\ 45,\ \alpha_{\rm L+M}(\exp)=0.00119\ 7\ (1967{\rm Me18}).$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	247.84	1/2	247.84 7	100	0.0	$3/2^{-}$	D+Q		$A_2 = -0.01 \ I; A_4 = +0.03 \ I$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									δ : -0.14 <i>10</i> or +9.5 + ∞ -48 for J=3/2, +0.24 +4-6 or pure E2 for J=5/2.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	627.11	1/2,3/2,5/2	627.10 7	100	0.0	$3/2^{-}$	D+Q		$A_2 = -0.01 \ I; A_4 = +0.01 \ I$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									δ : -0.12 +13-10 for J=3/2, +0.22 4 for J=5/2.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	637.07	1/2,3/2	389.26 9	4.0 4	247.84	1/2	D+Q		$A_2=0.00 4; A_4=-0.10 5$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									δ : 0.0 +2-3 or +1.8 +8-17 for J=3/2.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			637.04 7	96.0 4	0.0	3/2-	D+Q		$A_2 = -0.02 \ I; A_4 = 0.00 \ I$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									δ : -0.09 18 for J=3/2 (1982Pa01).
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	650.112	5/2-	457.19 6	13.4 9	192.912	5/2-	D+Q		$A_2 = +0.09 2; A_4 = +0.02 2$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									δ : +0.07 6 or +1.5 +3-2.
1023.23 $3/2^ 373.06\ 8$ $38.8\ 19$ $650.112\ 5/2^ D+Q$ $A_2=-0.01\ 2;\ A_4=+0.04\ 2$ $\delta: -0.32 + 2I - 28\ or +1.7 + 6-8.396.1\ I6.5\ 5627.11\ 1/2,3/2,5/2775.43\ 827.7\ I4247.84\ 1/2D+QA_2=-0.05\ 2;\ A_4=0.00\ 2\delta: 0.00\ 8\ or -1.7 + 3-4.1023.22\ 827.0\ I30.0\ 3/2^ D(+Q)\ +0.8\ +9-7A_2=+0.09\ 2;\ A_4=0.00\ 2\delta: +0.8\ +9-7.1063.25\ 7/2^ 413.2\ I18.5\ I3\ 650.112\ 5/2^ D+QA_2=-0.26\ 2;\ A_4=+0.02\ 2\delta: -0.17\ 3\ or\ -2.5\ 2.870.25\ I015.9\ 9192.912\ 5/2^ D+QA_2=+0.10\ 2\delta: +0.8\ 4\ 9^-7.1063.2\ 265.6\ I6\ 0.0\ 3/2^ D+QA_2=+0.02\ 2\delta: -0.17\ 3\ or\ -2.5\ 2.1063.2\ 265.6\ I6\ 0.0\ 3/2^ D+QA_2=+0.10\ 2A_2=+0.19\ 2;\ A_4=-0.02\ 2Mult: Q(+O)\ with\ \delta=0.00\ 3\ from\ \gamma(\theta)\ in\ 1982Pa01;\ M2,E3,M3ruled out by RUL.1065.24\ 5/2415.2\ 23.8\ 4\ 650.112\ 5/2^ D+QA_2=-0.04\ 5;\ A_4=+0.02\ 6\delta:\ -0.6\ 4\ for\ T=20$			650.14 6	86.6 9	0.0	3/2-	D+Q	-0.75 18	$A_2 = -0.25 2; A_4 = 0.00 2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1023.23	3/2-	373.06 8	38.8 19	650.112	5/2-	D+Q		$A_2 = -0.01 2; A_4 = +0.04 2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									δ : -0.32 +21-28 or +1.7 +6-8.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			396.1 1	6.5 5	627.11	1/2,3/2,5/2			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			775.43 8	27.7 14	247.84	1/2	D+Q		$A_2 = -0.05 2; A_4 = 0.00 2$
$1023.22 \ 8 \ 27.0 \ 13 \ 0.0 \ 3/2 \qquad D(+Q) \ +0.8 \ +9-7 \qquad A_2=+0.09 \ 2; \ A_4=0.00 \ 2 \\ \delta: \ +0.8 \ +9-7. \qquad A_2=-0.26 \ 2; \ A_4=+0.02 \ 2 \\ \delta: \ -0.17 \ 3 \ or \ -2.5 \ 2. \qquad B70.25 \ 10 \ 15.9 \ 9 \ 192.912 \ 5/2^- \qquad D+Q \qquad A_2=+0.24 \ 2; \ A_4=+0.01 \ 2 \\ \delta: \ +0.58 \ 4 \ or \ +3.5 \ 3. \qquad A_2=+0.19 \ 2; \ A_4=-0.02 \ 2 \\ Mult.: \ Q(+O) \ with \ \delta=0.00 \ 3 \ from \ \gamma(\theta) \ in \ 1982Pa01; \ M2,E3,M3 \qquad ruled out \ by \ RUL. \qquad A_2=-0.04 \ 5; \ A_4=+0.02 \ 2 \\ Mult.: \ Q(+O) \ with \ \delta=0.00 \ 3 \ from \ \gamma(\theta) \ in \ 1982Pa01; \ M2,E3,M3 \qquad ruled out \ by \ RUL. \qquad A_2=-0.04 \ 5; \ A_4=+0.02 \ 6 \\ \delta: \ 0.0 \ 4 \ for \ I=5/2 \ (1082Pa01) $			1000 00 0	27.0.12	0.0	2/2-	$\mathbf{D}(\cdot, \mathbf{O})$		$\delta: 0.00 \ 8 \ \text{or} \ -1.7 \ +3-4.$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1023.22 8	27.0 13	0.0	3/2-	D(+Q)	+0.8 + 9 - 7	$A_2 = +0.092; A_4 = 0.002$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10/2 25	7/0-	412.2.1	10 5 12	650 110	5/0-	D.O		0: +0.8 + 9 - 7.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1063.25	1/2	413.2 1	18.5 13	650.112	5/2	D+Q		$A_2 = -0.26 2; A_4 = +0.02 2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			970 25 10	15.0.0	102 012	5/0-	D		0: -0.1/3 or $-2.5/2$.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			870.25 10	15.9 9	192.912	5/2	D+Q		$A_2 = +0.24$ 2; $A_4 = +0.01$ 2 So ± 0.58 4 cm ± 2.5 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1062 2 2	65 6 16	0.0	2/2-	E2		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Mult.: Q(+O) with $\delta = 0.00$ 5 from $\gamma(\delta)$ in 1982Pa01; M2,E3,M3 1065.24 5/2 415.2 2 3.8 4 650.112 5/2 ⁻ D+Q $A_2 = -0.04$ 5; $A_4 = +0.02$ 6 $\delta_1 = 0.02$ (1082Pa01)			1063.2 2	03.0 10	0.0	3/2	E2		$A_2 = +0.19$ 2; $A_4 = -0.02$ 2 Mult : $O(+0)$ with $\delta = 0.00$ 2 from $\omega(0)$ in 1082De01: M2 E2 M2
1065.24 $5/2$ 415.2 3.84 650.112 $5/2^-$ D+Q $A_2 = -0.045$; $A_4 = +0.026$ δ_1 0.64 for $I = 5/2$ (1082Be01)									mult. $\chi(\pm 0)$ with $\theta = 0.00$ 3 from $\gamma(\theta)$ in 1962Pa01; M2,E3,M3
$\frac{1003.27}{5.0} \frac{3}{2} \frac{113.2}{5.0} \frac{1003.112}{5.0} \frac{3}{5} \frac{1003.112}{5} \frac{3}{2} \frac{1003}{5} $	1065.24	5/2	115 2 2	381	650 112	5/2-	$D \pm O$		$\Delta_{a} = -0.045$; $\Delta_{a} = \pm 0.026$
(1 - 1) (1 +	1005.24	512	713.2 2	5.0 7	050.112	512	P⊥A		$\delta = -0.64$ for $I = 5/2$ (1982Pa01)

γ ⁽⁶³ Zn) (continued)											
E _i (level)	J_i^π	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π	Mult. [‡]	δ^{\ddagger}	Comments			
1065.24	5/2	818.2 [#] 5	10	247.84	1/2			$I(818.2\gamma)/I(1065.2\gamma)=10/90$ from 1978Me17, but this γ is not seen in any other studies. It is considered questionable by the evaluator.			
		872.4 2	4.8 4	192.912	5/2-						
		1065.2 2	91.4 6	0.0	3/2-	D+Q		A ₂ = -0.19 2; A ₄ = $+0.02$ 2 δ : -0.30 7 or -1.6 2 for J= $5/2$ (1982Pa01).			
1206.36	7/2-	556.3 2	2.2 2	650.112	5/2-	D+Q		$A_2 = -0.35 \ II; A_4 = +0.03 \ I4$ $\delta: -0.32 \ 6 \ or \ -1.8 \ 2 \ for \ J = 7/2 \ (1982Pa01).$			
		1013.45 10	46.9 20	192.912	5/2-						
		1206.34 11	50.9 22	0.0	3/2-	E2		A ₂ =+0.19 2; A ₄ =-0.01 2 Mult.: Q(+O) with δ =+0.01 2 from $\gamma(\theta)$ in 1982Pa01; M2,E3,M3 ruled out by RUL.			
1284.26	5/2	634.5 5	7.7 6	650.112	5/2-						
		1036.34 8	27.6 13	247.84	1/2	E2		A ₂ =+0.13 2; A ₄ =+0.03 2 Mult.: Q(+O) with δ =+0.02 5 from γ(θ) in 1982Pa01; M2.E3.M3 ruled out by RUL.			
		1091.40 8	58.1 <i>15</i>	192.912	5/2-	D+Q		$A_2 = -0.02 \ 2; \ A_4 = -0.02 \ 2 \ \delta: -0.50 \ 8 \ or + 10 \ + 19 \ -4.$			
		1284.21 15	6.6 5	0.0	3/2-	D+Q	-0.75 + 30 - 20	$A_2 = -0.34 8; A_4 = +0.04 9$			
1395.44	3/2-	768.36 12	19.3 12	627.11	1/2,3/2,5/2	M1+E2		$A_2 = +0.02 \ 4; \ A_4 = -0.01 \ 4$ $\delta: +0.37 \ +25 - 18 \ \text{or} \ge 3.$			
		1147.3 4	6.7 8	247.84	1/2	D+Q					
		1202.8 5	4.0 5	192.912	$\frac{5}{2}$	D+Q M1+E2	1078 145 33	$A_{2} = 10, 10, 2; A_{2} = 0, 02, 2$			
1436.21	9/2-	1243.28 10	100	192.912	5/2- 5/2-	E2	+0.78 +45-55	$A_2 = +0.102, A_4 = -0.022$ $A_2 = +0.252; A_4 = -0.062$			
	~1-				-,-			Mult: Q(+O) with δ =-0.02 3 from $\gamma(\theta)$ in 1982Pa01; M2,E3,M3 ruled out by RUL.			
1664.90	3/2,5/2,7/2	1014 <i>1</i>	13.2 12	650.112	5/2-						
		1027.8 2	12.1 8	637.07	1/2,3/2			A ₂ =+0.11 5; A ₄ =+0.01 5 Mult., δ : δ (Q/D)=+0.7 +13-5 for J=3/2, +0.50 14 or +7 +10-3 for J=5/2 δ (Q/D)= 0.18 10 or -3.7 +10.20 for J=7/2 (1082Pa01)			
		1472.0 <i>1</i>	59.8 25	192.912	5/2-	M1+E2	+0.11 3	$A_2 = -0.04$ 2; $A_4 = +0.01$ 2 δ : +0.30 +23-11 or E2 for J=5/2, -0.64 9 or E2 for J=5/2, +0.11 3 for J=7/2.			
		1664.8 2	14.9 <i>10</i>	0.0	3/2-			A ₂ =-0.07 4; A ₄ =+0.09 5 Mult., δ : δ (Q/D) \leq 0.2 for J=3/2, +0.10 9 for J=5/2, -1.9 \leq δ (O/Q)<-0.05 for J=7/2.			
1691.22	5/2-	1054.1 <i>3</i>	5.3 7	637.07	1/2,3/2						
		1498.3 2	10.0 7	192.912	5/2-	D+Q		$A_2 = +0.09 \ 7; \ A_4 = +0.09 \ 8$ $\delta: -0.2 \le \delta \le +2.8.$			
		1691.2 <i>1</i>	84.7 1	0.0	3/2-	M1+E2		$A_2 = -0.17 2; A_4 = +0.01 2$			

4

					⁶³ Cu(p,n γ) 1 9	982Pa01 (continu	ued)				
	$\gamma(^{63}$ Zn) (continued)											
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^π	Mult. [‡]	δ^{\ddagger}	Comments				
1702.91	5/2,9/2	496.56 12	15.1 <i>13</i>	1206.36	7/2-	D(+Q)	-0.01 3	$A_2 = -0.24 \ 3; \ A_4 = +0.02 \ 4$ $\delta: +1.2 \ +9-5 \ \text{for } J = 5/2, \ -0.01 \ 3 \ \text{for } J = 9/2.$				
		639.64 10	84.9 <i>13</i>	1063.25	7/2-	D(+Q)	+0.00 2	$A_2 = -0.17 \ 2$; $A_4 = -0.01 \ 2$ δ : +0.54 +13-10 or +2.7 8 for J=5/2, 0.00 2 for J=9/2.				
1860.81	9/2-	797.5 2	23.4 14	1063.25	7/2-	M1+E2	-0.07 4	$A_2 = -0.25 4; A_4 = -0.06 5$				
		1210.7 2	61.3 20	650.112	5/2-	E2		A ₂ =+0.30 2; A ₄ =+0.01 2 Mult.: Q(+O) with δ =+0.02 3 from $\gamma(\theta)$ in 1982Pa01; M2.E3.M3 ruled out by RUL.				
		1668.0 4	15.3 20	192.912	5/2-			,				
1909.26	5/2	1272.3 2	6.8 5	637.07	1/2,3/2	D+Q		$A_2 = -0.08 \ 8; \ A_4 = 0.00 \ 10$ $\delta: \ 0.0 \ 2 \ \text{or} \ -3.6 + 17 - 60$				
		1716.3 2	22.7 14	192.912	5/2-	D+Q		$A_2 = +0.06 \ 3; \ A_4 = +0.02 \ 4$ $\delta_1 = -0.15 \ 1/ \ \text{or} \ +2.5 \ 7$				
		1909.0 3	70.5 14	0.0	3/2-	D+Q		$A_2 = -0.17$ 2; $A_4 = +0.02$ 2 $\delta_1 = -0.18$ 5 or -2.1 2				
1978.40	3/2.5/2.7/2	1328.0.5	26.3.24	650.112	5/2-			0. 0.10 5 01 2.12.				
1770110	0,_,0,_,,,_	1785.5 2	73.7 24	192.912	5/2-	D+Q		A ₂ =-0.08 2; A ₄ =+0.01 2 δ : +0.6 $\leq \delta \leq$ +3.2 for J=3/2, -0.8 <i>I</i> or -9 +4-10 for J=5/2, +0.12 +5-3 for J=7/2.				
2050.38	9/2	844.1 <i>4</i>	39 <i>3</i>	1206.36	7/2-			,				
		987.1 2	61 <i>3</i>	1063.25	7/2-	D+Q		$A_2 = -0.50 4$; $A_4 = +0.07 4$ δ : $-0.20 4$ or $-2.2.2$.				
2158.10	3/2-	1530.8 <i>3</i>	40 2	627.11	1/2.3/2.5/2	M1+E2	>0.4	$A_2 = +0.08$ 4; $A_4 = -0.09$ 5				
	- 1	1910.4 3	60 2	247.84	1/2	M1+E2	+1.7 + 26 - 8	$A_2 = -0.50 4; A_4 = +0.07 4$				
2249.99	5/2,7/2	1184.8 2	50 2	1065.24	5/2	D+Q		$A_2 = +0.14$ 7; $A_4 = -0.06$ 8 δ : +0.1 + 5-2 or +1.5 + 1/1-8 for I=5/2 +0.3 / for I=7/2				
		1599.8 2	50 2	650.112	5/2-	D+Q		$A_2 = -0.13$ 7; $A_4 = -0.10$ 8 $\delta_1 = -2 + l - 8$ for $l = 5/2$, $+0.05$ 6 or $-5 + l - 2$ for $l = 7/2$				
2261.53	(3/2)	1634.4 2	74 2	627.11	1/2.3/2.5/2	M1+E2	-0.5 + 3 - 4	$A_2 = -0.21$ 5: $A_4 = +0.05$ 6				
	(-/-)	2261.5 3	26.2	0.0	3/2-	D+O		$A_2 = -0.19 \ I3; A_4 = +0.22 \ I7$				
2288.32	7/2	1081.9 3	32.2	1206.36	7/2-			<u>2</u> , 1				
	,	1638.2 2	68 2	650.112	5/2-	D+Q		$A_2 = -0.42 \ 4; \ A_4 = -0.03 \ 3$ $\delta: -2.0.2 \ \text{or} \ -0.25 \ 4$				
2291.47	3/2	1641.7 <i>3</i>	34 2	650.112	5/2-							
	,	1654.2 2	39 2	637.07	1/2,3/2	D+Q		$A_2 = -0.01 \ 6; \ A_4 = +0.04 \ 8$ $\delta: > -0.5.$				
		2043.6 3	27 2	247.84	1/2	D+Q	-0.5 + 3 - 5	$A_2 = -0.31 \ I0; \ A_4 = +0.11 \ I0$				
2292.98	3/2	2045.1 3	100	247.84	1/2	M1+E2	+1.7 +78-10	$\tilde{A_2} = +0.33 \ 10; \ A_4 = -0.11 \ 11$				
2377.81	7/2,9/2	674.9 2	100	1702.91	5/2,9/2	D+Q	-0.53 5	A_2^- =+0.02 2; A_4^- =-0.02 2 δ_1^- =-0.11 4 or -5.1 +8-12 for I=7/2, -0.53 5 for I=9/2				
2403.28	1/2,3/2,5/2	1380.0 2	65 5	1023.23	3/2-	D+Q		$A_2 = -0.06$ 7; $A_4 = +0.04$ 9 δ : <0 for J=3/2, +0.09 +15-12 for J=5/2.				

S

 $_{30}^{63}$ Zn $_{33}$ -5

I

$\gamma(^{63}$ Zn) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$
2403.28	1/2,3/2,5/2	1776.4 5	35 5	627.11	1/2,3/2,5/2	2609.12		1971.9 8	17 5	637.07	1/2,3/2
2522.10		1456.9 2	51 4	1065.24	5/2			2609.1 5	38 5	0.0	3/2-
		1871.9 2	49 <i>4</i>	650.112	5/2-	2634.52		1428.1 <i>3</i>	45 <i>3</i>	1206.36	$7/2^{-}$
2600.09		1950.5 4	43 4	650.112	5/2-			2441.6 <i>3</i>	55 <i>3</i>	192.912	5/2-
		2351.7 4	44 <i>4</i>	247.84	1/2	2690.9		2443 1	100	247.84	1/2
		2599.8 8	13 <i>3</i>	0.0	3/2-	2750.72		2100.6 4	54 8	650.112	$5/2^{-}$
2609.12		1959.0 7	45 5	650.112	5/2-			2557.7 6	46 8	192.912	$5/2^{-}$

[†] From 1982Pa01. Intensity values are %photon branching from each level. [‡] From 1982Pa01 deduced based on measured $\gamma(\theta)$, unless otherwise noted. Where level T_{1/2} are present, RUL is used to determine the magnetic or electric nature of a transition. [#] Placement of transition in the level scheme is uncertain.

 $^{63}_{30}$ Zn₃₃

⁶³Cu(**p**,**n**γ) 1982Pa01

Level Scheme (continued)

Intensities: % photon branching from each level

 $^{63}_{30}$ Zn₃₃

Legend