⁶⁰Ni(α ,n γ), (HI,xn γ) 1979Mu08,1978Mu02,1998Si04

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Huo Junde, Yang Dong, Huo Meirong,	ENSDF	28-Aug-2008					

1979Mu08: ⁶⁰Ni(α ,n γ), E=9.5-19 MeV; ⁵⁴Fe(¹¹B,np γ), E=30 MeV; ⁵⁸Ni(⁷Li,np γ), E=20 MeV. $\gamma(\theta)$, n γ , $\gamma\gamma$ coin, linear polarization, $T_{1/2}$.

1978Mu02: ⁶⁰Ni(α ,n γ), E=8.5-16 MeV, $\gamma(\theta)$, p(γ), $\gamma\gamma$ coin, linear polarization, T_{1/2}.

1978Me17: ⁶⁰Ni(α ,n γ), E=10, 12, 14 MeV, $\gamma(\theta)$, $\gamma\gamma$ coin ⁵⁴Fe(¹²C,2pn γ), E=50, 55, 60 MeV, $\gamma(\theta)$, $\gamma\gamma$ coin.

1977Ni01: ⁶⁰Ni(α ,n γ), E=12 MeV, $\gamma(\theta$,H) of 193 γ . 1996HaZV: ⁴⁰Ca(²⁸Si,4pn γ), E=120 MeV, measured $\gamma\gamma$ -coin with 10 Compton-suppressed HPGe detectors, a typical Ge detector has the resolution of 2.1 keV at 1.33 MeV.

1998Si04: 50 Cr(16 O,2pn γ), E=75 MeV, measured $\gamma\gamma$ -coin with 12 Compton suppressed HPGe detectors along with 14 BGO detectors to reduce radioactive background. Measured $\gamma(\theta)$, DCO ratios.

Others: 1967Bi04, 1968Bi03.

Data below 1.3 MeV are from 1978Mu02, others are from 1979Mu08, except as noted.

⁶³Zn Levels

E(level)	\mathbf{J}^{π}	$T_{1/2}^{\#}$	Comments
0 ^b	3/2-		
192.90 ^b 7	5/2-	0.53 [@] ns 12	$T_{1/2}$: other: 0.62 ns 21 from $gT_{1/2}$ =0.19 ns 7, and if g=0.30 (1977Ni01, integral rotation).
248.17 7	$1/2^{-}$	33 [@] ps 8	J ^{π} : from $\gamma(\theta)$ and linear polarization of the 1037-keV γ ray deexciting the 5/2 ⁻ level.
627.19 8	1/2-		J^{π} : deduced (1/2 ⁻): $\gamma(\theta)$ and yield curve of the decay γ are similar to those of the 248-keV γ ray.
637.21 9	3/2-		J^{π} : from $\gamma(\theta)$ and linear polarization of the 638-keV decay γ .
650.21 7	5/2-		J^{π} : from $\gamma(\theta)$ and linear polarization of both decay γ' s.
1023.56 8	3/2-	>1.0 ps	J^{π} : deduced $3/2^{(-)}$: $3/2$ from $\gamma(\theta)$ and linear polarization of the 776-keV decay γ , positive parity favored at this low excitation energy.
1063.78 <mark>b</mark> 9	$7/2^{-}$		J^{π} : $3/2^{-}$, $7/2^{-}$ from $\gamma(\theta)$ and linear-polarization data.
1065.91 20	$1/2^{-}$		J^{π} : $3/2^{-}$, $7/2^{-}$ from $\gamma(\theta)$ and linear-polarization data.
1206.42 10	$7/2^{-}$		J^{π} : from $\gamma(\theta)$ and linear polarization of 1013- and 1207-keV decay γ' s.
1284.49 11	$5/2^{-}$		J^{π} : from $\gamma(\theta)$ and linear polarization of 1036- and 1284-keV decay γ' s.
1394.4 <i>3</i>	3/2-	87 fs 25	J^{π} : 3/2 from $\gamma(\theta)$ and linear polarization of the 1394-keV decay γ , 3/2 ⁺ leads to unreasonably large B(M2)(W.u.) and is, therefore, rejected.
1437.4 <i>3</i>	9/2 ^{-‡}	0.69 ^a ps 21	
1664.0 4	$7/2^{-}$	232 & fs 63	J^{π} : from $\gamma(\theta)$ and linear polarization of decay γ' s.
1691.34 24	5/2-	83 fs 21	J^{π} : from $\gamma(\theta)$ and linear polarization of 1691-keV decay γ .
1703.7 <i>3</i>	$9/2^{+}$	$32^{@}$ ps 4	J^{π} : from $\gamma(\theta)$ and linear polarization of 497-keV decay γ .
1861.7 4	9/2-	0.49 ps 16	J^{π} : from $\gamma(\theta)$ and linear polarization of 797 and 1212-keV decay γ' s.
1977.7 4	-	<280 fs	J^{π} : deduced 9/2 ⁻ : 9/2 ⁻ , 5/2 ⁺ from $\gamma(\theta)$ and linear polarization of the 1327-keV decay γ , 5/2 ⁺ leads to unreasonably large B(M2)(W.u.) and is, therefore, rejected.
2050.7 <mark>b</mark> 5	9/2-		J ^{π} : deduced $\geq 5/2^{-}$ from $\gamma(\theta)$ and linear polarization of the 987-keV γ transition.
2157.4 3	3/2-	180 ^{&} fs 49	J^{π} : 3/2 from $\gamma(\theta)$ and linear polarization of the 1909-keV decay γ , 3/2 ⁺ rejected from L(p,d)=1.
2233.8 <i>3</i>	$11/2^{-}$	>1.4 ps	J^{π} : from $\gamma(\theta)$ and linear polarization of 570-keV decay γ .
2249.5 4	-	$104^{\&}$ fs 28	J^{π} : deduced 9/2 ⁻ from $\gamma(\theta)$ and linear polarization of the 1185-keV decay γ .
2289.7 4	3/2-	14 fs 7	J ^{π} : 3/2 from $\gamma(\theta)$ and linear polarization of the 2042-keV decay γ , 3/2 ⁺ leads to unreasonably large B(M2)(W.u.) and is, therefore, rejected.
2319.3 ^b 4	$11/2^{-\ddagger}$	347 fs 90	· · · · · · · · ·
2379.8 5	9/2+	>1.4 ps	J ^{π} : deduced 9/2 ⁽⁺⁾ : 9/2 from $\gamma(\theta)$ and linear polarization of the decay γ , 9/2 ⁺ favored due to transition to 9/2 ⁺ level.
2585.2 4	13/2+†	3.54 [@] ps 28	J^{π} : $\gamma(\theta)$ and linear polarization of the decay γ indicate a stretched E2, >9/2 from the

Continued on next page (footnotes at end of table)

 ${}^{63}_{30}$ Zn₃₃-1

⁶⁰Ni(α ,n γ), (HI,xn γ) 1979Mu08,1978Mu02,1998Si04 (continued)

⁶³Zn Levels (continued)

E(level)	J^{π}	$T_{1/2}^{\#}$	Comments			
			yield curve.			
2635.2 <i>4</i> 2826.9 <i>5</i>	7/2 ⁻ 11/2 ⁺	187 ^a fs 52 291 ^a fs 90	J^{π} : from $\gamma(\theta)$ and linear polarization of the 1429-keV γ . J^{π} : 13/2 ⁻ , 11/2 ⁺ from $\gamma(\theta)$ and linear polarization of the decay γ , 13/2 ⁻ leads to unreasonable large B(M2)(Wu) and is therefore rejected			
2911.9 6	9/2 [‡]	>1.4 ps				
2934.5 5	13/2-‡	215 fs 62				
3481.0 7	13/2+		From 50 Cr(16 O,2pn γ) and 40 Ca(28 Si,4pn γ). J ^{π} : based on mult=M2 of 875 γ feeding from 15/2 ⁻ .			
3528.0 ^b 6	13/2-		 From ⁵⁰Cr(¹⁶O,2pnγ). J^π: the level feeds the 9/2⁻ and 11/2⁻ through two parallel transitions of 1478 and 1209 keV, respectively. 			
3763.5 5	$(17/2^+)^{\ddagger\ddagger}$					
3770.4 7	(15/2)+		From ${}^{50}Cr({}^{16}O,2pn\gamma)$. J ^{π} : 944 γ to 11/2 ⁺ level, 1185 γ (Q) to 13/2 ⁺ level.			
3891.6 9			From 40 Ca(28 Si,4pn γ).			
4355.3 ^b 6	(15/2)-		From ${}^{50}Cr({}^{16}O,2pn\gamma)$. J ^{π} : 875 γ (M2) to 13/2 ⁺ level, 591 γ (E1) to 17/2 ⁺ level.			
4902.9 9			From 40 Ca(28 Si,4pn γ).			
5077.0 7	$(19/2)^+$		From ${}^{50}Cr({}^{16}O,2pn\gamma)$ and ${}^{40}Ca({}^{28}Si,4pn\gamma)$. J ^{π} : 1307 γ (Q) to 15/2 ⁺ level.			
5347.2 7	21/2+†	<280 fs	J^{π} : 21/2, 17/2 from $\gamma(\theta)$ and linear polarization of the decay γ , 21/2 ⁻ and 17/2 ⁻ lead to unreasonably large B(M2)(W.u.) and are, therefore, rejected. 1584 γ (E2) to 17/2 ⁺ ruled out 17/2 ⁺ .			
5406.6 7	17/2-		From ${}^{50}Cr({}^{16}O,2pn\gamma)$. J ^{π} : 1879 γ (Q) to 13/2 ⁻ level.			
5424.2 ^b 6	17/2-		From ${}^{50}Cr({}^{16}O,2pn\gamma)$. J ^{π} : 1897 γ (Q) to 13/2 ⁻ level.			
5916.4 ^b 7	19/2-		From 50 Cr(16 O,2pn γ) and 40 Ca(28 Si,4pn γ). J ^{π} : 1561 γ to 15/2 ⁻ level. 492 γ and 510 γ to 17/2 ⁻ level, respectively.			
6234.5 ^b 7	21/2-		From 50 Cr(16 O,2pn γ) and 40 Ca(28 Si,4pn γ). J ^{π} : 810 γ (O) to 17/2 ⁻ level.			
6488.0 <i>13</i>	$(23/2)^+$		From ${}^{50}Cr({}^{16}O,2pn\gamma)$ and ${}^{40}Ca({}^{28}Si,4pn\gamma)$. J ^{π} : 1411 γ , 1307 γ , and 944 γ in cascade.			
6570.7 ^b 8	23/2 ⁽⁻⁾		From ${}^{50}Cr({}^{16}O,2pn\gamma)$ and ${}^{40}Ca({}^{28}Si,4pn\gamma)$. $I^{\pi}: 654\gamma(O)$ to $19/2^{-}$ level.			
7611.5 ^b 12	25/2-		From ${}^{50}Cr({}^{16}O,2pn\gamma)$. $I^{\pi}: 1377\gamma(O)$ to $21/2^{-}$ level			
7927.7 ^b 13	27/2 ⁽⁻⁾		From ${}^{50}Cr({}^{16}O,2pn\gamma)$ and ${}^{40}Ca({}^{28}Si,4pn\gamma)$. $I^{\pi}: 1847\gamma = 1357\gamma$ and 1224γ in cascade			
9097.6 ^b 16	(29/2 ⁻)		From ${}^{50}Cr({}^{16}O,2pn\gamma)$. $I^{\pi}: 1485\gamma(O)$ to $25/2^{-}$ level			
9774.8 ^b 17	(31/2 ⁻)		From ${}^{50}Cr({}^{16}O,2pn\gamma)$. J ^{π} : 1847 γ , 1357 γ , and 1224 γ in cascade.			

[†] From $\gamma(\theta)$ in $(\alpha,n\gamma)$, large cross section in $({}^{12}C,2pn\gamma)$, and systematics of particle-core coupling states. [‡] From $\gamma(\theta)$ and linear polarization of decay γ (1979Mu08).

[#] From DSAM, except as noted.

^(a) Recoil-distance method.
[&] Deduced from weighted f factors.

⁶⁰Ni(α ,n γ), (HI,xn γ) 1979Mu08,1978Mu02,1998Si04 (continued)

⁶³Zn Levels (continued)

 a Deduced from ny coincidence experiment. b K=3/2⁻ band.

γ ⁽⁶³ Zn)								
E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	Comments
192.90	5/2-	192.9 [†] 1	100	0	3/2-	M1+E2	+0.07 3	δ: others: -0.03 2 (1978Me17), -0.07 3 (1968Bi03). DCO=1.4 1.
248.17	1/2-	248.4 1	100	0	3/2-			
627.19	1/2-	627.0 I	100	0	3/2-		0.05 0.4	
637.21	3/2-	389.4 2	95.8 4	248.17	1/2-	M1+E2	-0.05 + 3 - 4	
(50.21	5/0-	637.1 T	4.2.4	0	3/2	MI+E2	+0.04 2	
650.21	5/2	$45/.4^{+}$ I	14.6 12	192.90	5/2	MI+E2	-0.08 + 1 - 2	δ : others: 0.00 4 or +1./2 (19/8Me1/).
		650.21 1	85.4 12	0	3/2	MI+E2	-0.57 3	δ : other: +0.29 3 (19/8Me17). DCO>2.
1023.56	3/2-	373.5 1	36.6 16	650.21	$5/2^{-}$	(M1+E2)	-0.82 +4-5	δ: others: +0.4 <i>l</i> or +1.5 5 (1978Me17).
		396.2 1	5.8 4	627.19	$1/2^{-}$	(M1+E2)	+0.57 +6-3	
		775.5 1	27.0 20	248.17	$1/2^{-}$	(M1+E2)	-0.91 +24-6	δ: others: +0.2 <i>l</i> or +1.3 <i>3</i> (1978Me17).
		1023.2 [†] 2	30.6 16	0	$3/2^{-}$	(M1+E2)	+1.9 2	δ: others: -0.4 2 or -1.5 5 (1978Me17).
1063.78	$7/2^{-}$	413.5 <i>1</i>	16.3 14	650.21	$5/2^{-}$	D+Q [@]	$+0.08^{@}$ 3	DCO=2.3 2.
		870.8 1	10.4 7	192.90	$5/2^{-}$	D+Q@	$-0.51^{@}5$	DCO=1.2 <i>1</i> .
1065.01	1/2-	1064.1 2	73.3 14	0	$3/2^{-}$			DCO=1.0 <i>1</i> .
1005.91	$\frac{1}{2}$	1065.9 2 556	273	650.21	3/2 5/2-	D+O	-1 24 9	
1200.12	1/2	569.4	$94^{\&}8$	637.21	3/2-	DIQ	1.219	F.: from 1978Me17
		1013.4^{\dagger} 1	45.8.20	192.90	$5/2^{-}$	M1+E2	+47 + 1 - 7	δ : others: -0.45 10 or +7.0.25
		1013.1 1	13.0 20	1)2.)0	5/2	1411 112	1 1.7 1 1	(1978Me17). DCO=1.2 2.
		1206.8^{\dagger} 2	42.0 20	0	$3/2^{-}$	E2+M3	-0.03 2	DCO=1.0 2.
1284.49	$5/2^{-}$	$1036.3^{\dagger} 2$	34.5 19	248.17	$1/2^{-}$	$E_{2}(+M_{3})$	-0.01 1	
	- /	1091.6 [†] 1	59.4 20	192.90	5/2-			δ : +0.39 5 or -4.3 12 (1978Me17).
		$1284.0^{\dagger} 5$	6.1 6	0	$3/2^{-}$	M1+E2	-0.7 2	δ : other: +0.8 3 (1978Me17).
1394.4	$3/2^{-}$	767.2 [†] 6	43 2	627.19	$1/2^{-}$			
		1146.5 6	52	248.17	$1/2^{-}$			
		1201.5 5	43	192.90	5/2-			
		1394.2 8	48 1	0	3/2-	M1+E2	+0.36 + 14 - 10	
1437.4	9/2-	1244.9 4	100	192.90	5/2-	E2(+M3)	-0.01 2	δ: other: -1.2 2 (1978Me17).
1664.0	7/2-	1471.3 5	75 1	192.90	5/2-	M1+E2	+0.18 3	
1601 24	5/2-	1664.01 6	25 1	0	$3/2^{-}$	E2(+M3)	+0.03 3	
1091.34	5/2	1498.6.3	63	192.90	5/2 5/2-			
		$1691.2^{\dagger}6$	88 1	0	$3/2^{-}$	M1+E2	-0.10.3	
1703.7	9/2+	267 ^{&}	1.9 ^{&} 1	1437.4	9/2 ⁻	1011 1 112	0.10 5	
		497.2 [†] 4	14.1 ^{&} 4	1206.42	7/2-	E1(+M2)	+0.02 2	DCO=2.0 2.
		639.5 6	82 ^{&} 4	1063.78	7/2-	$D(+Q)^{\textcircled{a}}$	$0.00^{@} 2$	DCO=1.8 <i>1</i> .
		1510 <mark>&</mark>	2.0 ^{&} 2	192.90	5/2-			
1861.7	9/2-	797.4 [†] 6	26 3	1063.78	7/2-	M1+E2	-0.03 2	
		1211.5 [†] 5	70 <i>3</i>	650.21	$5/2^{-}$	E2(+M3)	+0.01 2	

Continued on next page (footnotes at end of table)

			⁶⁰ Ni(α ,n γ), (H	⁰ Ni(α ,n γ), (HI,xn γ)		1979Mu08,1978Mu02,1998Si04 (continued)					
					γ ⁽⁶³ Zn) (continued)						
E _i (level)	J^{π}_i	Eγ	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	Comments			
1861.7	9/2-	1669.3 7	4 2	192.90	5/2-						
1977.7	-	1327.3 [†] 4	23 2	650.21	5/2-	E2(+M3)	-0.01 2				
		1785.1 [†] 6	77 2	192.90	5/2-	E2+M3	-0.10 5				
2050.7	9/2-	844.6 7	29 2	1206.42	7/2-						
		986.9 [†] 7	68 2	1063.78	$7/2^{-}$	D+Q [@]	$+0.40^{\textcircled{0}}5$	DCO=2.1 5.			
		1858 <mark>&</mark>	2.8 ^{&} 4	192.90	$5/2^{-}$						
2157.4	3/2-	1530.0 [†] 4	10 <i>I</i>	627.19	$1/2^{-}$	M1+E2	-2.0 2				
		1909.3 [†] 4	90 1	248.17	$1/2^{-}$	M1+E2	-2.3 2				
2233.8	$11/2^{-}$	570.2 [†] 5	38 1	1664.0	$7/2^{-}$	E2(+M3)	-0.03 3				
	,	796.6 <i>3</i>	20 2	1437.4	9/2-						
		1169.6 4	42 2	1063.78	7/2-						
2249.5	-	1185.4 [†] 5	71 2	1063.78	$7/2^{-}$	M1+E2	+0.9 2				
		1599.5 [†] 5	29 2	650.21	5/2-	E2(+M3)	-0.04 3				
2289.7	3/2-	1639.1 5	75 3	650.21	5/2-						
		2041.9 5	25 3	248.17	$1/2^{-}$	M1+E2	-0.6 3				
2319.3	$11/2^{-}$	1255.6 4	100	1063.78	$7/2^{-}$	E2(+M3)	-0.05 + 5 - 2	DCO=0.8 2.			
2379.8	9/2+	676.1 ^T 3	100	1703.7	9/2+	(M1+E2)	-2.5 + 5 - 12				
2585.2	$13/2^{+}$	881.3 [†] 3	100	1703.7	9/2+	E2+M3	-0.25 10	DCO=0.9 1.			
2635.2	7/2-	1428.5 [†] 4 2442.7 5	70 2 30 2	1206.42 192.90	7/2 ⁻ 5/2 ⁻	M1(+E2)	+0.02 7				
2826.9	$11/2^{+}$	1123.3 [†] 4	100	1703.7	9/2+	M1+E2	+0.7 1	DCO=0.8 2.			
2911.9	9/2	1705.5 [†] 5	100	1206.42	7/2-	D+Q	-1.7 1				
2934.5	$13/2^{-}$	1497.2 [†] 5	100	1437.4	9/2-	E2(+M3)	-0.02 3	DCO=1.6 5.			
3481.0	$13/2^{+}$	654 <mark>&</mark>		2826.9	$11/2^{+}$						
		1778 ^{&}	100 ^{&}	1703.7	9/2+						
3528.0	$13/2^{-}$	1209 <mark>&</mark>	58 ^{&} 4	2319.3	$11/2^{-}$			DCO=1.9 4.			
		1478 <mark>&</mark>	42 ^{&} 2	2050.7	9/2-			DCO=1.0 2.			
3763.5	$(17/2^+)$	1177.7 [†] 5	100	2585.2	$13/2^{+}$	(E2+M3)	-0.20 3	DCO=1.1 <i>1</i> .			
3770.4	$(15/2)^+$	944 <mark>&</mark>	44 ^{&} 3	2826.9	$11/2^{+}$			DCO=1.4 4.			
		1185 <mark>&</mark>	56 ^{&} 1	2585.2	$13/2^{+}$	Q ^{&}		DCO=0.9 1.			
3891.6		1306 ^a		2585.2	$13/2^{+}$						
4355.3	$(15/2)^{-}$	591 <mark>&</mark>	49.6 <mark>&</mark> 24	3763.5	$(17/2^+)$	E1		DCO=1.3 6.			
		875 <mark>&</mark>	6.6 ^{&} 7	3481.0	$13/2^{+}$	M2 ^{&}					
		1770 ^{&}	43.8 <mark>&</mark> 24	2585.2	$13/2^{+}$			DCO=1.2 3.			
		(2036)		2319.3	11/2-						
4902.9	$(10/2)^{+}$	11394		3763.5	$(17/2^{+})$						
5077.0	$(19/2)^{1}$	1185	20.28 15	3891.0	(15/0) +	0					
		130/~	$30.2 \sim 15$	3770.4	$(15/2)^{+}$	Q		DC0=0.9 2.			
50.45.0	01/0±	1313	70 ∝ 4	3763.5	$(1/2^{+})$	50		DCO=0.9 2.			
5347.2	21/21	1584.1 6	100	3763.5	$(17/2^{+})$	E2		Mult.: from $\gamma(\theta)$ and RUL. DCO=1.2 <i>1</i> .			
5406.6	$17/2^{-}$	1879 ^{&}	78 [°] 5	3528.0	$13/2^{-}$	Q		DCO=1.1 2.			
		2472 ^{&}	22 ^{&} 5	2934.5	$13/2^{-}$						
5424.2	$17/2^{-}$	1659 <mark>&</mark>	41.3 ^{&} 25	3763.5	$(17/2^+)$			DCO>2.			
		1897 <mark>&</mark>	53.2 ^{&} 30	3528.0	$13/2^{-}$	Q		DCO=1.0 2.			
		2490 <mark>&</mark>	5.5 ^{&} 19	2934.5	$13/2^{-}$						
5916.4	19/2-	492 ^{&}	28 ^{&} 2	5424.2	$17/2^{-}$						

Continued on next page (footnotes at end of table)

			⁶⁰ Ni(α ,nγ), (HI,xnγ) 1979Mu08,1978Mu02,1998Si04 (continued)						
					$\gamma(^{e}$	⁵³ Zn) (con	tinued)		
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]		Comments	
5916.4	19/2-	510 ^{&} 1013 ^a	23 ^{&} 3	5406.6 4902.9	17/2-				
		1561 ^{&}	49 ^{&} 3	4355.3	$(15/2)^{-}$				
6234.5	$21/2^{-}$	318 <mark>&</mark>	12.1 <mark>&</mark> 6	5916.4	19/2-		DCO=1.4 <i>3</i> .		
		810 <mark>&</mark>	22.4 <mark>&</mark> 11	5424.2	17/2-	Q	DCO=0.7 2.		
		828 <mark>&</mark>	20.1 ^{&} 17	5406.6	$17/2^{-}$	Q	DCO=1.0 2.		
		888 <mark>&</mark>	3.8 ^{&} 3	5347.2	$21/2^+$				
		1157 <mark>&</mark>	41.2 ^{&} 22	5077.0	$(19/2)^+$		DCO=1.4 3.		
6488.0	$(23/2)^+$	1411 <mark>&</mark>	100 7	5077.0	$(19/2)^+$		DCO=0.8 3.		
6570.7	$23/2^{(-)}$	336 <mark>&</mark>	8.4 ^{&} 5	6234.5	$21/2^{-}$		DCO=2.0 4.		
		654 <mark>&</mark>	8.7 ^{&} 5	5916.4	19/2-	Q	DCO=1.1 2.		
		1224 <mark>&</mark>	83 <mark>&</mark> 4	5347.2	$21/2^+$		DCO=2.1 2.		
7611.5	$25/2^{-}$	1377 <mark>&</mark>	100 ^{&} 5	6234.5	$21/2^{-}$	Q	DCO=0.7 2.		
7927.7	$27/2^{(-)}$	1357 <mark>&</mark>	100 ^{&} 5	6570.7	$23/2^{(-)}$	Q	DCO=1.3 1.		
9097.6	$(29/2^{-})$	1486 <mark>&</mark>	100 <mark>&</mark> б	7611.5	$25/2^{-}$	Q	DCO=1.2 3.		
9774.8	$(31/2^{-})$	1847 <mark>&</mark>	100 ^{&} 10	7927.7	$27/2^{(-)}$				

[†] γ linear polarization measured (1979Mu08,1978Mu02).

 $\frac{1}{2}$ % photon branching from each level.

[#] From $\gamma(\theta)$ and linear polarization (1979Mu08,1978Mu02), except as noted otherwise.

[@] From $\gamma(\theta)$ only (1978Me17).

[&] From 1998Si04. ^{*a*} From 1996HaZV.

⁶³₃₀Zn₃₃

⁶⁰Ni(α ,n γ), (HI,xn γ) 1979Mu08,1978Mu02,1998Si04

Level Scheme (continued)

Intensities: % photon branching from each level

 $^{63}_{30}$ Zn₃₃

1 Scheme (continued)

From ENSDF

 $_{30}^{63}$ Zn₃₃-8

 $^{63}_{30}$ Zn $_{33}$ -8