Adopted Levels

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 196,17 (2024)	30-Sep-2023

 $Q(\beta^{-})=15880 \text{ syst}; S(n)=1730 \text{ syst}; S(p)=20460 \text{ syst}; Q(\alpha)=-14100 \text{ syst}$ 2021Wa16

 $\Delta Q(\beta^{-})=610, \Delta S(n)=640, \Delta S(p)=780, \Delta Q(\alpha)=780 \text{ (syst,}2021\text{Wa16)}.$

 $S(2n)=5630\ 580,\ S(2p)=39450\ 940,\ Q(\beta^-n)=11280\ 570\ (syst,2021Wa16).$

2009Ta05,2009Ta24: ⁶³Ti was produced and identified by fragmentation of ⁷⁶Ge beam at 132 MeV/nucleon at NSCL facility using A1900 fragment separator combined with S800 analysis beam line to form a two stage separator system. The transmitted fragments were analyzed event-by-event in momentum and particle identification. The nuclei of interest were stopped in eight Si diodes which provided measurement of energy loss, nuclear charge and total kinetic energy. The time-of-flight of each particle that reached the detector stack was measured in four different ways using plastic scintillators, Si detectors, and parallel-plate avalanche counters. The simultaneous measurement of ΔE signals, the magnetic rigidity, total kinetic energy and the time-of-flight (tof) provided unambiguous identification of the atomic number, charge state and mass number. Measured cross sections.

Theoretical calculations:

2023Ta03: calculated isotope production cross sections.

2011Gu03: calculated rms radii of p-wave valence neutron distribution.

1985Bu27,1971Pe16: calculated isomeric state single nucleon decay $T_{1/2}$.

⁶³Ti Levels

E(level)

Comments

0

 $\%\beta^-=?; \ \%\beta^-n=?$ $\sigma=10^{-11} \text{ mb } +2-1 \text{ (read by the evaluator from figure 2 of 2009Ta05 and also figure 8 and 9 of 2009Ta24).}$ E(level): fragment observed by 2009Ta05 is assumed to be in the ground state of ⁶³Ti. J[#]: 1/2⁻ (syst,2021Ko07), 9/2⁺ (theory,2019Mo01).

 $T_{1/2}$: >360 ns estimated from time-of-flight of \approx 360 ns for ⁶⁰Ge and ⁶⁴Se as in 2005St29 (from the same lab as 2009Ta05). Actual half-life is expected to be much longer as suggested by systematics value of 10 ms (2021Ko07) and calculated values from 2019Mo01 and 2021Mi17.

Calculated $\%\beta^{-1}n=32$, $\%\beta^{-2}n=3$ (2019Mo01).

Calculated $\%\beta^{-1}n=12.03$, $\%\beta^{-2}n=2.17$, $\%\beta^{-3}n=0.004$ (2021Mi17).

Calculated $T_{1/2}(\beta \text{ decay})=12.3 \text{ ms} (2019Mo01), 11.1 \text{ ms} (2021Mi17).$