		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 196,17 (2024)	30-Sep-2023

Parent: ⁶³Co: E=0.0; $J^{\pi}=7/2^{-}$; $T_{1/2}=27.4 \text{ s} 4$; $Q(\beta^{-})=3661 19$; $\%\beta^{-}$ decay=100

 63 Co-J^{π},T_{1/2}: From Adopted Levels of 63 Co.

⁶³Co-Q(β^{-}): From 2021Wa16.

1985Ru05: ⁶³Co source was produced from W(⁸²Se,X) with 11.5 MeV/nucleon ⁸²Se beam from the UNILAC accelerator at GSI. γ rays were detected with Ge detectors and β particles were detected with a 4π plastic scintillator. Measured E γ , I γ , $\beta\gamma$ -coin, $\gamma\gamma$ -coin. Deduced levels, J, π , β -decay branching ratios, log *ft*.

1972Jo08: ⁶³Co source was produced from ⁶⁴Ni(n,d) with neutrons from irradiation of a beryllium target with 24-28 MeV protons from AVF cyclotron at Amsterdam. γ rays were detected with a Ge(Li) detector. Measured E γ , I γ , γ (t). Deduced levels, J, π , parent T_{1/2}, β -decay branching ratios, log *ft*.

1975Ro25: ⁶³Co source was produced from ⁶⁴Ni(n,d) at Amsterdam Measured $\beta\gamma$ (t). Deduced T_{1/2} of the 87-keV level,

1969Wa15: ⁶³Co source was produced from ⁶⁴Ni(n,d) with neutrons from the University of Arkansas 400-KV accelerator. γ rays were were detected with NaI(Tl) and Ge detectors and β particles were detected with a plastic scintillator. Measured E γ , γ (t). Deduced parent T_{1/2}.

2005Pe12 and 2005Pe23: ⁶³Co was produced in reaction of ⁶⁵Cu¹⁵⁺ at the IGISOL facility, Jyvaskyla. γ rays were detected with a HPGe detector and β particles were detected with two Si detectors. Measured E γ , I γ , β . No numerical data are reported.

The decay scheme is considered incomplete due a large gap of 1.4 MeV between Q-value=3661 *19* and the highest observed level at E=2262.

⁶³Ni Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0.0	1/2-	100.8 y 15	
87.15 11	5/2-	1.69 μs 4	$T_{1/2}$: value from this dataset: 1.61 μ s 7, from $\beta\gamma$ (t) in 1975Ro25.
155.55 18	3/2-		·
517.8 6	3/2-		
1068.99 23	$(5/2^{-})$		
1251.1 4	$(5/2,7/2^{-})$		
1451.7 <i>4</i>	$(5/2^-, 7/2^-, 9/2^-)$		
2261.7 5	$(5/2^-, 7/2^-)$		

[†] From a least-squares fit to γ -ray energies.

[‡] From Adopted Levels, unless otherwise noted.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
(1399 <i>19</i>)	2261.7	1.39	4.9	av $E\beta$ =538.7 85
(2209 <i>19</i>)	1451.7	1.45	5.7	av $E\beta$ =910.7 89
(2410 <i>19</i>)	1251.1	1.01	6.0	av $E\beta = 1005.1 \ 90$
(2592 <i>19</i>)	1068.99	3.76	5.6	av $E\beta = 1092.1 \ 90$
(3143 [#] 19)	517.8	0.11	8.9	av $E\beta$ =1364.5 90
(3505 [#] 19)	155.55	0.17	9.0	av $E\beta$ =1536.9 91
(3574 19)	87.15	92	4.8	av $E\beta$ =1561.5 92

[†] From γ +ce intensity balance at each level. Due to incomplete decay scheme, $I\beta^{-}$ and $\log ft$ should be considered as approximate.

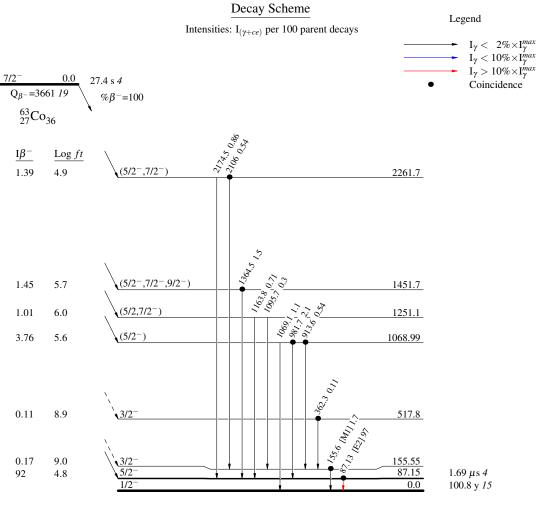
[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

63 Co β^- decay 1985Ru05,1972Jo08,1975Ro25 (continued)

$\gamma(^{63}\text{Ni})$

I γ normalization: From $\Sigma I(\gamma + ce)(to g.s.) = 100$, assuming the g.s. β^- feeding is zero. It should be considered as approximate due to incomplete decay scheme.


E_{γ}^{\ddagger}	Ι _γ ‡@	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments
87.13 [#] 11	2310 80	87.15	5/2-	0.0	1/2-	[E2]	0.969 14	$\begin{array}{c} \alpha(\mathrm{K}) = 0.854 \ 13; \ \alpha(\mathrm{L}) = 0.1002 \ 15; \\ \alpha(\mathrm{M}) = 0.01388 \ 21 \\ \alpha(\mathrm{N}) = 0.000458 \ 7 \\ \% \mathrm{I}\gamma = 49.4 \\ \mathrm{E}_{\gamma}: \ \text{other:} \ 86.3 \ 7 \ (1969 \mathrm{Wa15}). \\ \mathrm{I}_{\gamma}: \ \text{other:} \ 1887 \ (1972 \mathrm{Jo08}). \end{array}$
155.6 [#] 2	76 3	155.55	3/2-	0.0	1/2-	[M1]	0.01463 21	$\alpha(K)=0.01312 \ 19; \ \alpha(L)=0.001322$ $19; \ \alpha(M)=0.0001862 \ 27$ $\alpha(N)=7.87 \times 10^{-6} \ 11$ $\%I\gamma=1.63$ $I_{\gamma}: \text{ other: } 68 \ 8 \ (1972Jo08).$
362.3 5	51	517.8	3/2-	155.55	$3/2^{-}$			%Iγ=0.107
913.6 [#] 5	25 3	1068.99	(5/2 ⁻)	155.55	3/2-			%Iγ=0.54 I _γ : other: 18 2 (1972Jo08).
981.7 [#] 3	100 6	1068.99	(5/2 ⁻)	87.15	5/2-			% $I\gamma$ =2.14 I_{γ} : other: 100 <i>11</i> (1972Jo08).
1069.1 [#] 4	51 6	1068.99	(5/2 ⁻)	0.0	$1/2^{-}$			% $I\gamma$ =1.09 I_{γ} : other: 62 <i>12</i> (1972Jo08).
1095.7 5	14 <i>3</i>	1251.1	$(5/2,7/2^{-})$	155.55	$3/2^{-}$			%Iγ=0.30
1163.8 4	33 6	1251.1	$(5/2,7/2^{-})$	87.15	5/2-			$\%I\gamma = 0.71$
1364.5 <i>3</i>	68 6	1451.7	$(5/2^-, 7/2^-, 9/2^-)$	87.15	,			%Iγ=1.45
2106 1	25 5	2261.7	$(5/2^{-},7/2^{-})$	155.55	3/2-			%Iγ=0.54
2174.5 [#] 5	40 6	2261.7	(5/2 ⁻ ,7/2 ⁻)	87.15	5/2-			%I γ =0.86 I $_{\gamma}$: other: 47 5 (1972Jo08).

[†] Additional information 1. [‡] From 1985Ru05, unless otherwise noted. Intensity values from 1972Jo08 have been normalized to $I\gamma(981.7\gamma)=100$ by the evaluator, as quoted under comments.

[#] From 1972Jo08.

[@] For absolute intensity per 100 decays, multiply by 0.0214.

⁶³Co β⁻ decay 1985Ru05,1972Jo08,1975Ro25

63₂₈Ni₃₅

3