		Туре	Author	History Citation	Literatu	re Cutoff Date
		Full Evaluation	Jun Chen	NDS 196,17 (2024)	30-	Sep-2023
$Q(\beta^{-})=66.977$ 15 S(2n)=17433.5 3	5; S(n)=683 7, S(2p)=21	7.77 6; S(p)=11377 19 170.3 26 (2021Wa16).	$Q; Q(\alpha) = -7272$	2.8 4 2021Wa16		
				⁶³ Ni Levels		
Band assignme	ents are from	n (⁴⁸ Ca,2 α 3n γ).				
			Cross R	eference (XREF) Flag	58	
		A 63 Co β^- decay B 26 Mg(48 Ca,2 α 3 C 48 Ca(18 O,3n γ) D 62 Ni(n, γ):resona	$\begin{array}{c} \mathbf{E} \\ \mathbf{r} \\ \mathbf{F} \\ \mathbf{G} \\ \mathbf{ances} \mathbf{H} \end{array}$	⁶² Ni(n,γ),(pol n,γ) E= ⁶² Ni(d,p),(pol d,p) ⁶² Ni(d,pγ) ⁶² Ni(α , ³ He)	=th I J K L	⁶⁴ Ni(p,d) ⁶⁴ Ni(d,t),(pol d,t) ⁶⁴ Ni(³ He, α) ⁶⁵ Cu(d, α)
E(level) [†]	J ^{π‡}	T _{1/2} #	XREF			Comments
0.0 87.220 28	1/2-	100.8 y <i>15</i> 1.69 μs <i>4</i>	A C EFGHI	ΞJKL $%\beta^-=100$ $\mu=+0.4965$ (2 J^{π} : L(pol d,p)= analyzing po $T_{1/2}$: weighted 20 (1971Ba& (1962H005) superseded b stated in 200 μ : from laser r $\mu(^{61}Ni)=-0.$ 2019StZV e $\delta < r^2 > (^{60}Ni, ^{63})$ fm 2 (2022Ma04) (2022Ma04) SIKL %IT=100 $\mu=+0.752$ 3 (1 J^{π} : L(pol d,p)= analyzing po $T_{1/2}$: weighted β^- decay, ar μ : from 1970B	2017Dy01, =L(pol d,t) wers. I average of 39). Other seems dis by 101.2 y 08Co01). esonant p 74868 4 a valuation. Ni)=0.277 Ma04). $v(^{60}$ Ni, 63 N. 970B106, 63 N. 970B106, 63 N. 1 average of ad 1.71 μ s B106 by TI	2019StZV))=1 from 0 ⁺ ; L-1/2 transfer from of 101.2 y 15 (2008Co01) and 100.1 y is: 125 y 6 (1956Mc95) and 91.6 y 31 screpant; 101.1 y 14 (1996Co25; y 15 in 2008Co01 from the same lab, as hotoionization spectroscopy, using as a reference (2017Dy01). See also if m^2 8. Total charge radius R _c =3.842 Ni)=784.9 MHz 26(stat) 27(syst) 2020StZV))=3 from 0 ⁺ ; L-1/2 transfer from of 1.61 µs 7 from 1975Ro25 in ⁶³ Co \sim 3 from ⁶² Ni(d,py). DPAD, See also 2020StZV evaluation.
155.510 18	3/2-		A EF HI	$\begin{array}{c} \mu : \text{ from } 1970\\ \text{IJKL} \text{J}^{\pi} : \text{L}(\text{pol } \text{d}, \text{p}) =\\ \text{ analyzing } \text{p} \\ \end{array}$	=L(pol d,t)=1 from 0^+ ; L+1/2 transfer from
517.897 30	3/2-		A EF HI	$JKL \qquad J^{\pi}: L(pol d,p) =$	=L(pol d,t))=1 from 0^+ ; L+1/2 transfer from
1001.253 22	1/2-	0.29 ps +22-11	EF HI	INCLUSION DEPENDENT OF THE CONTRACT OF THE CONTRACT. THE CONTRACT OF THE CONTRACT. THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT. THE CONTRACT OF THE CONTRACT OF THE CONTRACT	=L(pol d,t) owers. $P_1U 01$ in adening m)=1 from 0 ⁺ ; L-1/2 transfer from (n, γ):E=th based on γ -ray induced nethod (GRID).
1069.02 22	(5/2)		A F	J': probable al $1/2^-$.	nowed β^-	record from $1/2$ parent; 1069.1 γ to
1251.11 <i>31</i> 1291.93 [@] <i>11</i>	(5/2,7/2 ⁻) 9/2 ⁺	3.33 ns 21	A F BC F HI	L J^{π} : β^{-} feeding LJK $\mu = -1.211 \ I3 \ (J^{\pi}: L(d,p) = L(d))$	from 7/2 ⁻ (1989Mu2 (,t)=4 from	⁻ parent; 1095.7 γ to 3/2 ⁻ . 7,2020StZV) n 0 ⁺ .

⁶³Ni Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XRE	F	Comments			
					$T_{1/2}$: other: 10 ns 2 (1997Is13) from γ (t) using ¹⁹⁸ Pt(Ge,X γ)			
1323.704 25 1451.74 30 1657 10	3/2 ⁻ (5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻)		EF H A F F	H J L 1	μ : from 1989Mu27 by TDPAD. See also 2020StZV evaluation. J^{π} : L(pol d,p)=1 from 0 ⁺ ; L+1/2 transfer from analyzing powers. J^{π} : probable allowed β^{-} feeding from 7/2 ⁻ parent. XREF: l(1673).			
1677 <i>10</i> 1788 <i>10</i>	5/2-,7/2-		F H F	H 1 JL	XREF: l(1673). XREF: J(1770). E(level): weighted average of 1787 <i>10</i> from (d,p) and 1790 <i>15</i> from (d, q)			
1902 <i>10</i>	5/2-,7/2-		F	JL	J^{π} : L(d,t)=3 from 0 ⁺ for a level at 1770. XREF: J(1910)L(1910). E(level): weighted average of 1899 <i>10</i> from (d,p) and 1910 <i>15</i> from (d, α).			
2149 10	3/2-		F	IJKl	J ^π : L(d,t)=3 from 0 ⁺ for a level at 1910. However, L(d,p)=(1) for level at 1899 <i>10</i> giving (1/2 ⁻ ,3/2 ⁻). XREF: l(2165). E(level): from (d,p). W: L (nol d t)=1 from 0 ⁺ : L + 1/2 transfer from analyzing powers.			
2183.53 [@] 14	11/2 ⁽⁺⁾	3.6 ps 6	BC	1	J^{*} : E(poi d,t)=1 from 0 ⁻ ; E+1/2 transfer from analyzing powers. XREF: I(2165). J^{π} : 891.56 γ D+Q to 9/2 ⁺ ; 630.5 γ D+Q from 2815, 13/2 ⁺ ;			
2261.7 5	(5/2 ⁻ ,7/2 ⁻)		A F	L	parity=(+) from band assignment. See comments for $J^{n}(2815)$. XREF: L(2249).			
2297 10	5/2+		FI	HIJK	J^{*} : probable allowed β feeding from $7/2$ parent; 2106 γ to $3/2$; E(level): from (d,p). J^{π} : L(pol d,p)=L(pol d,t)=2 from 0 ⁺ ; L+1/2 transfer from			
2352.95 5	(1/2 ⁻ ,3/2)		EF	L	analyzing powers. XREF: L(2339). J^{π} : 225.66 γ to 5/2 ⁻ , 2352.92 γ to 1/2 ⁻ ; primary 4485.2 γ from			
2519 10	(9/2)+		FI	HIJKl	$1/2^+$ in (n,γ) E=th. XREF: 1(2532). E(level): from (d,p). J^{π} : L(pol d,p)=L(pol d,t)=4 from 0 ⁺ ; 9/2 ⁺ favored by analyzing powers			
2573 10	(7/2 ⁺ ,9/2 ⁺)		F	1	XREF: I(2532).			
2675 <i>10</i> 2695.96 <i>4</i>	(3/2 ⁺ ,5/2 ⁺) 1/2 ⁻		F EF	L	J^{*} : L(d,p)=(4) from 0 ⁺ . J^{π} : L(d,p)=(2) from 0 ⁺ . XREF: L(2724). I^{π} : L (nol d p)=1 from 0 ⁺ : L -1/2 transfer from analyzing powers			
2814.18 [@] 22	13/2+	0.49 ps 21	BC		J^{π} : 1522.48 γ E2, ΔJ =2 to 9/2 ⁺ gives 5/2 ⁺ or 13/2 ⁺ ; 5/2 ⁺ assignment would require J(2183)=7/2 (based on 630.5 γ D+Q from 2815 to 2183 level and 891.7 γ D+Q from 2183 to 1292, 9/2 ⁺ level), which is inconsistent with J(2183)=(11/2,13/2) from $\gamma(\theta)$ in (¹⁸ O,3n γ). This argument here also determines			
2822 10	(1/2 ⁻ ,3/2 ⁻)		F		J(2183)=11/2. J^{π} : L(d,p)=(1) from 0 ⁺ .			
2898 25 2953 10	1/2+		F	L I K	J^{π} : L(pol d,p)=0 from 0 ⁺ .			
3013 10 3022 10 3075 10			F F F	ן 1 1	XREF: 1(3034). XREF: 1(3034).			
3104 <i>10</i> 3179 <i>10</i>	3/2 ⁺ ,5/2 ⁺ 5/2 ⁻ ,7/2 ⁻		F F	L	J^{π} : L(pol d,p)=2 from 0 ⁺ . XREF: L(3150). J^{π} : L(pol d,p)=3 from 0 ⁺ .			

⁶³Ni Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$J^{\pi \ddagger}$ XREF			Comments
3236.63? 7			Е	1	XREF: E(?)I(3222).
3254 10			F	1	XREF: 1(3222).
3283.53 5	$(1/2.3/2.5/2^+)$		Е		J^{π} : primary 3283.53 γ from $1/2^+$ in (n. γ) E=th.
3292 10	5/2+		F		J^{π} : L(pol d,p)=2 from 0 ⁺ : L+1/2 transfer from analyzing powers.
3338 10	$3/2^+$ $5/2^+$		F	L.	XREF: L(3358).
000010	0/2 ,0/2		-	-	E(level): weighted average of 3336 10 from (d,p) and 3358 30 from (d, α). I^{α} : L(nol d p)=2 from 0 ⁺ .
3427 10	$(1/2^-, 3/2^-)$		F	1	XREF: $1(3460)$. J ^{π} : L(pol d,p)=(1) from 0 ⁺ .
3471 10			F	1	XREF: 1(3460).
3522 10	$3/2^+, 5/2^+$		F		J^{π} : L(pol d,p)=2 from 0 ⁺ .
3551 10	$3/2^+, 5/2^+$		F		J^{π} : L(pol d,p)=2 from 0 ⁺ .
3594 10	$(5/2^{-}, 7/2^{-})$		F	JKL	XREF: J(3580)K(3550)L(3578).
					J^{π} : L(d,t)=(3) from 0 ⁺ . 3550 40 with L=3 from (³ He, α) could be the same level.
3608 10			F		
3633.67 7	$(3/2^+, 5/2^+)$		EF		J^{π} : L(d,t)=(2) from 0 ⁺ for a level at 3638 10.
3651.00 [@] 22	$15/2^{(+)}$	В			J^{π} : 1467.6 γ Q, $\Delta J=2$ to 11/2 ⁽⁺⁾ , 836.8 γ D+Q to 13/2 ⁺ .
3680 10			F	1	XREF: 1(3683).
3694 10			F	1	XREF: 1(3683).
3723 10	$3/2^+.5/2^+$		F	1	XREF: 1(3683).
	-1)-1				J^{π} : L(d,t)=2 from 0 ⁺ .
3739.04 4	(1/2 ⁻ ,3/2)		E		J^{π} : 3739.6 γ to 1/2 ⁻ , 3651.69 γ to 5/2 ⁻ ; primary 3098.98 γ from 1/2 ⁺ in (n, γ) E=th.
3769 10			F	1	XREF: 1(3780).
3780 10			F	1	XREF: 1(3780).
3792 10			F	1	XREF: 1(3780).
3804 10			F	1	XREF: 1(3780).
3836 10			F		
3889 10			F		
3932 10	5/2+		F	1	XREF: $l(3938)$. $I^{7} \cdot I$ (nol d p)=2 from 0 ⁺ : I +1/2 transfer from analyzing powers
3951 10	5/2+		F	1	XREF: I(3938). I^{T} . I (nol d p)=2 from 0 ⁺ ; I +1/2 transfer from analyzing powers
4022 10			F	1	Solution $(p) = 2$ from 0, $p = 1/2$ transfer from analyzing powers. XREF: $1(4018)$
4033 10	$(1/2^{-} 3/2^{-})$		т Т	î	XREF: $1(4018)$.
1055 10	(1/2, 3/2)		•	-	I^{π} : I (nol d n)=(1) from 0 ⁺
4054 61 5	$(1/2^+)$		FF		I^{π} : L(pol d p)=(0) from 0 ⁺ for a level at 4063 10
4074 10	$(1/2^+)$		F		I^{π} : L (pol d p)=(0) from 0 ⁺
4106 10	$3/2^+$ $5/2^+$		F		I^{π} : L(pol d p)=2 from 0 ⁺
4267 10	$\frac{3}{2}, \frac{3}{2}$		F		J^{π} : L(pot a,p)-2 from 0 : I^{π} : L(d p)=0
4312 38 6	$(1/2^{-} 3/2^{-})$		Ff		XRFF: f(4313)
1512.50 0	(1/2, 3/2)				I^{π} : I (nol d n)=(1) from 0 ⁺
4222.000 24	17/0(+)				J^{π} 1510.0 O AL 2 (12)2 ⁺ (72.0 (15)2)(⁺)
4323.98 24	$11/2^{(1)}$	В	_		J^{*} : 1510.8 γ Q, $\Delta J=2$ to 13/2 ⁺ , 6/2.8 γ to 15/2 ⁺⁺ .
4332.0? 8	5/0- 7/0-		E _		XREF: E(?).
4359 10	5/2 ,1/2		F	K	XREF: $K(43/0)$.
					E(level): weighted average of 4558 10 from (d,p) and 4570 40 from ("He, α). J ^{π} : L(³ He, α)=3 for a level at 4370 40.
4387 10	5/2+		F		J^{π} : L(pol d,p)=2 from 0 ⁺ ; L+1/2 transfer from analyzing powers.
4449 10	3/2+,5/2+		F		J^{π} : L(pol d,p)=2 from 0.
4459.15 6	(1/2, 3/2)		E		J^{π} : primary 2378.88 γ from $1/2^+$ in (n, γ) E=th; 4458.98 γ to $1/2^-$.
4488 10	$(1/2^{-}, 3/2^{-})$		F		J^{π} : L(pol d,p)=(1) from 0 ⁺ .
4570.19 24	$15/2^{(+)}$	В			J ^{π} : 2385.7 γ Q, Δ J=2 to 11/2 ⁽⁺⁾ , 919.9 γ D+Q to 15/2 ⁽⁺⁾ .
4555 10			F		
4586 10	3/2+,5/2+		F		J^{π} : L(pol d,p)=2 from 0 ⁺ .

⁶³Ni Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
4622 10	$3/2^+, 5/2^+$	F	J^{π} : L(pol d,p)=2 from 0 ⁺ .
4692.10	$1/2^+$	F	I^{π} : L(pol d p)=0 from 0 ⁺
4722 10	-/-	F	
4799 10		F	
4812 10		F	
4878 10	$3/2^+$ $5/2^+$	F	I^{π} : I (nol d n) - 2 from 0 ⁺
4071	3/2, $3/2$		$J^{T} = 2050.2 + 0.44.2 + 10/2^{+} + 10^{-1}$
48/1.6 4	$(17/2^{+})$	В	J^{π} : 2058.3 γ Q, $\Delta J=2$ to 13/2 ⁺ ; band assignment.
4876 10	1/2+	F	J^{n} : L(pol d,p)=0 from 0 ⁺ .
4919 10	$(3/2^+, 5/2^+)$	F	J^{n} : L(pol d,p)=(2) from 0 ⁺ .
4957 10	$1/2^{+}$	F	J^{π} : L(pol d,p)=0 from 0 ⁺ .
5026 10		F	
5060 10	$(3/2^+, 5/2^+)$	F	J^{π} : L(pol d,p)=(2) from 0 ⁺ .
5093 10		F	
5123 10	$3/2^+, 5/2^+$	F	J^{π} : L(pol d,p)=2 from 0 ⁺ .
5142 10	$(5/2^-, 7/2^-)$	F	J^{π} : L(pol d,p)=(3) from 0 ⁺ .
5178.59 6	$1/2^{+}$	EF	J^{π} : L(pol d,p)=0 from 0 ⁺ for a level at 5178 <i>10</i> .
5240	$3/2^+, 5/2^+$	F	J^{π} : L(pol d,p)=2 from 0 ⁺ .
5291.08 ^a 31	$(17/2^+)$	В	J^{π} : tentative assignment in (⁴⁸ Ca,2 α 3n γ) from the comparison with cranked Nilsson-Strutinsky model calculations.
5363.92 8	$(3/2)^+$	EF	J^{π} : L(pol d,p)=2 from 0 ⁺ for a level at 5372; 4362.4 γ to 1/2 ⁻ .
5445	$3/2^+.5/2^+$	F	J^{π} : L(pol d,p)=2 from 0 ⁺ .
5539 92 28	$(19/2^+)$	R	$I^{\pi} \cdot 969.7 \times O$ $\Lambda I = 2 \text{ to } 15/2^{(+)}$
5595	$3/2^+$ $5/2^+$	F	I^{π} : L(pol d p)=2 from 0 ⁺
5711	$3/2^+$ $5/2^+$	F	I^{π} : L(pol d,p) 2 from 0 . I^{π} : L (pol d,p)=2 from 0 ⁺
5863	5/2 ,5/2	F	
5930	$3/2^{+}$ $5/2^{+}$	F	I^{π} : L(pol d p)=2 from 0 ⁺
6000	5/2 ,5/2	F	• E(por d,p) 2 nom • .
6070	$3/2^+.5/2^+$	F	J^{π} : L(pol d,p)=2 from 0 ⁺ .
6160	-/- ,-/-	F	$(1, -(1, \dots, 1)) = \dots $
6280	$3/2^+.5/2^+$	F	J^{π} : L(pol d,p)=2 from 0 ⁺ .
6299 22 29	$(21/2^{-})$	R	I^{π} : proposed in $({}^{48}C_{22}\alpha_{3}n_{\gamma})$ with no explicit argument given for the negative
02//.22 2/	(21/2)	2	parity: 759.3v D $\Lambda I=1$ to (19/2 ⁺)
6320		F	party, rootof D, as roo(roo).
6440	$1/2^{+}$	F	I^{π} : L(pol d p)=0 from 0 ⁺
6500	$3/2^+$ $5/2^+$	F	I^{π} : L(pol d,p)=2 from 0 ⁺
6502.6^{a} 4	$(21/2^+)$	R	I^{π} : 1211 5y () $\Lambda I = 2$ to (17/2 ⁺): hand assignment
6502.0 + 6574.168 - 20	$(21/2^+)$	D	\overline{J}_{-1} 1702 5 Q. A.L. 2 to $(17/2^{+})$, band assignment.
65/4.10 ^{••} 50	$(21/2^{+})$	В	J^{*} : 1/05.5 γ Q, $\Delta J=2$ to (1//2 [*]); band assignment.
(0838.073 33)	1/2	DE	J^{*} : s-wave neutron capture from 0 [*] .
6912 21 9	1/2	D	S(II) = 0857.770 (2021 wato).
0842.24 0	1/2 (1/2)	U D	
6847 16 6	(1/2)	U D	
0847.10 0	(1/0)	D	
6849.80 0	(1/2)	D	
0855.28 0	(1/2)	D	
6858.04 0	(1/2)	D	
6862.00 6	(1/2)	D	
0803./4 0	(2)	U D	
0800.8 0	(3/2)	D	
6867.25 6	(1/2)	D	
6871.69 6	(3/2)	D	
6875.44 6		D	
6877.67 6		D	
6878.35 6		D	
6880.10 6	1/2	D	
6882.18 6		D	

⁶³Ni Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF
6890.32 6	(1/2)	D
6893.88 7		D
6894.48 7	(1/2)	D
6900.2 4	(1/2)	D
6904.59 7	(1/2)	D
6907.53 7		D
6911.00 <i>6</i>		D
6913.99 7	1/2	D
6915.03 6		D
6917.93 6		D
6930.21 6		D
6930.95 6	1/2	D
6940.27 6		D
6942.61 7	1/2	D
6949.16 6		D
6955.91 8		D
6967.58 7		D
6974.55 8		D
6979.65 8		D
6983.11 8		D
6985.24 9		D
6996.93 8		D
7015.778		D
7021.93 8	1/2	D
7049.03 21	1/2	D
7005.39 7	1/2	D D
7070.09 10	1/2	ע
7095.1		ע
7103.9	1/2	D D
7119.0	1/2	D D
7130	1/2	D
7132 5		D
7132.5	1/2	D
7148.2	-/-	D
7152		D
7156		D
7160	1/2	D
7176.5	1/2	D
7184		D
7188.3	1/2	D
7196		D
7206.3	1/2	D
7214.1	1/2	D
7220.0	1/2	D
7232.8	1/2	D
7234.6		D
7251.3		D
7254	1/2	D
7264	1/2	D
7275	1/2	D
7280.4		D
/281	1/2	ע
1288	1/2	U D
1292.2	1/2	ע
7310	1/Z	ע
/310		ע

⁶³Ni Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
7318.5	1/2	D	
7323.4	1/2	D	
7328	1/2	D	
7345.0		D	
7351		D	
7358		D	
7364.7	1/2	D	
7368	1/2	D	
7383		D	
7397.2		D	
7400.4	1/2	D	
7409	1/2	D	
7411.9	1/2	ע	
7410.0	1/2	ע	
7488 2 4	$(25/2^{-})$	R	I^{π} 1189 (b) (O) AI-2 to (21/2 ⁻)
8019.8 ^{<i>a</i>} 4	$(25/2^+)$	B	J^{π} : 1517.2 γ Q, $\Delta J=2$ to (21/2 ⁺): hand assignment.
8265 1 & 1	$(25/2^+)$	R	I^{π} : 1600 92 O AI-2 to (21/2 ⁺); band assignment
$9844 2^a 5$	$(29/2^+)$	B	I^{π} : 1824 4 γ O AI=2 to (25/2 ⁺); band assignment
10045 0 4	(2)/2	D	π_{1} 1720 Sec O AL-2 to (25/2 ⁺); band assignment
11850 15	29/2 7/2-	ъ	$J = 1700.07 \text{ Q}, \Delta J = 2.00 (23/2), \text{ band assignment.}$
11050 15	1/2	1	analysis of measured $\sigma(\theta)$ data in (p,d) IAS.
11945.7 ^{<i>a</i>} 5	$(33/2^+)$	В	J^{π} : 2101.4 γ Q, ΔJ =2 to (29/2 ⁺); band assignment.
11963.8 ^{&} 5	$(33/2^+)$	В	J ^{π} : 1917.9 γ Q, Δ J=2 to (29/2 ⁺); band assignment.
14051.5 <mark>&</mark> 6	$(37/2^+)$	В	J^{π} : 2087.6 γ Q, $\Delta J=2$ to (33/2 ⁺); band assignment.
14170.1 ^{<i>a</i>} 6	$(37/2^+)$	В	J^{π} : 2224.4 γ Q, $\Delta J=2$ to (33/2 ⁺); band assignment.
16197.5 ^a 6	$(41/2^+)$	В	J ^{π} : 2027.3 γ Q, Δ J=2 to (37/2 ⁺); band assignment.
16293.4 <mark>&</mark> 8	$(41/2^+)$	В	J^{π} : 2241.9 γ Q, $\Delta J=2$ to (37/2 ⁺); band assignment.
18337.0 ^{<i>a</i>} 7	$(45/2^+)$	В	J^{π} : 2139.5 γ Q, $\Delta J=2$ to (41/2 ⁺); band assignment.
18772.3 ^{&} 22	$(45/2^+)$	В	J^{π} : 2478.8 γ Q, $\Delta J=2$ to (41/2 ⁺); band assignment.
20942.5 ^a 8	$(49/2^+)$	В	J^{π} : 2605.4 γ Q, $\Delta J=2$ to (45/2 ⁺); band assignment.
21408.5 ^{&} 25	$(49/2^+)$	В	J^{π} : 2636.2 γ Q, $\Delta J=2$ to (45/2 ⁺); band assignment.
23886.1 ^{<i>a</i>} 15	$(53/2^+)$	В	J^{π} : 2943.6 γ Q, $\Delta J=2$ to (49/2 ⁺); band assignment.
24500.0 ^{&} <i>31</i>	$(53/2^+)$	В	J^{π} : 3091.4 γ Q, $\Delta J=2$ to (49/2 ⁺); band assignment.
27223.6 ^{<i>a</i>} 20	$(57/2^+)$	В	J^{π} : 3337.4 γ Q, $\Delta J=2$ to (53/2 ⁺); band assignment.
x ^b	J≈(25/2 ⁻)	В	Additional information 1.
			E(level), J^{π} : x \approx 12.7 MeV and $J^{\pi} \approx 25/2^{-}$ from comparison of energies and
			spins of observed bands (Fig. 6 in 2013Al19) in ($^{48}Ca, 2\alpha 3n\gamma$).
621.6+x ^b 4	J+2	В	
1600.4+x ^b 5	J+4	В	
2901.9+x ^b 6	J+6	В	
4541.2+x ^b 8	J+8	В	
6478.8+x ^b 9	J+10	В	
8766.9+x ^b , 13	J+12	В	
11475.0+x ^b , 19	J+14	В	
14550.6+x ^b 24	J+16	В	

[†] From a least-squares fit to γ -ray energies with uncertainties for levels connected with those γ rays and others are from transfer reactions for E(level)<S(n)=6837.8 and (n, γ):resonances for E(level)>S(n), unless otherwise noted.

⁶³Ni Levels (continued)

- [‡] For yrast levels in (${}^{48}Ca, 2\alpha 3n\gamma$), it is assumed spin ascends as excitation energy increases; assignments for levels in (n,γ):res are from analysis of neutron resonance data.
- [#] From RDM in ($^{18}O,3n\gamma$), unless otherwise noted.
- [@] Band(A): Band based on 1292, 9/2⁺ level.
- & Band(B): Band based on 4871, $(17/2^+)$ level. Q(transition)=2.4 +17-12 (deduced β_2 =0.43 +25-20). Proposed configuration=[31,0⁽⁻⁾2].
- ^{*a*} Band(C): Band based on 5291, $(17/2^+)$ level. Q(transition)=1.9 +13-12 (deduced $\beta_2=0.35 + 20-21$). Proposed configuration=[31,0⁽⁺⁾2]. Band crossing at $\hbar\omega\approx1.1$ MeV by configuration=[2(-1)1,0⁽⁺⁾2] which results in backbending.
- ^b Band(D): Band based on J ($25/2^{-}$). Band feeds mostly ($21/2^{-}$) state at 6299 level. Direct transition to ($21/2^{-}$) and thus yrast character of the band is in contradiction with measured relative intensities of three bands.

$\gamma(^{63}\text{Ni})$

Additional information 2.

 ∞

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I _γ ‡	E_f J_j^r	g Mult.#	α^{\dagger}	Comments
87.220	5/2-	87.13 [@] 11	100	0.0 1/2	2 ⁻ [E2]	0.969 14	B(E2)(W.u.)=2.274 +60-58 α (K)=0.854 13; α (L)=0.1002 15; α (M)=0.01388 21 α (N)=0.000458 7 E : other: 87 2.4 from (d pc)
155,510	3/2-	155,505,22	100	0.0 1/2	9-		E_{γ} : other: 155.6.2 from ⁶³ Co β^- decay.
517.897	3/2-	362.40 8	100	155.510 3/2	2-		E_{ν} : other: 362.3 5 from ⁶³ Co β^{-} decay.
	,	430.71 5	2.4	87.220 5/2	2-		
		517.61 <i>31</i>	30 6	0.0 1/2	2-		
1001.253	1/2-	483.38 5	91 <i>19</i>	517.897 3/2	2 ⁻ [M1]	0.000941 13	$\alpha(K)=0.000845 \ I2; \ \alpha(L)=8.31\times10^{-5} \ I2; \ \alpha(M)=1.171\times10^{-5} \ I6$ $\alpha(N)=5.04\times10^{-7} \ 7$
		845.739 32	100 <i>19</i>	155.510 3/2	2 ⁻ [M1,E2]	0.00032 4	B(M1)(W.u.)=0.31 +19-13 α (K)=0.00029 4; α (L)=2.8×10 ⁻⁵ 4; α (M)=4.0×10 ⁻⁶ 5 α (N)=1.72×10 ⁻⁷ 22 P(M1)(W.u.)=0.063 + 30, 27 if M1, P(E2)(W.u.)=152 + 04, 66 if E2
		913.96 4	2.3 5	87.220 5/2	2- [E2]	0.000301 4	$\alpha(\text{K})=0.000271 \ 4; \ \alpha(\text{L})=2.65\times10^{-5} \ 4; \ \alpha(\text{M})=3.74\times10^{-6} \ 5 \\ \alpha(\text{N})=1.600\times10^{-7} \ 22 \\ \text{B}(\text{E}2)(\text{Wu})=2.4\pm16-11 \\ \text{K}=1.000\times10^{-7} \ 22 \\ \text{K}=1.00\times10^{-7} \ 2$
		1001.259 <i>33</i>	6.0 12	0.0 1/2	2 ⁻ [M1]	0.000220 21	$\alpha(K) = 0.000198 \ I9; \ \alpha(L) = 1.93 \times 10^{-5} \ I9; \ \alpha(M) = 2.72 \times 10^{-6} \ 27$ $\alpha(N) = 1.17 \times 10^{-7} \ I1$ B(M1)(W n) = 0.0023 + 16 - 10
1069.02	$(5/2^{-})$	913.6 [@] 5	$25^{@}$ 3	155.510 3/2	2-		
	(-1)	$981.7^{@}.3$	$100^{@} 6$	87.220 5/2	<u> </u>		
		$1069.1^{@}4$	51 [@] 6	0.0 1/2	-)-		
1251-11	$(5/2,7/2^{-})$	$1095.7^{@}5$	$42^{@}9$	155 510 3/2)—		
1201.11	(3/2,7/2)	$1163.8^{@} 4$	100@ 18	87 220 5/2)—		
1291.93	9/2+	1204.7 ^{&} I	100 10	87.220 5/2	2- (M2)	0.000290 4	B(M2)(W.u.)= $0.232 + 16 - 14$ α (K)= $0.000259 4$; α (L)= $2.54 \times 10^{-5} 4$; α (M)= $3.59 \times 10^{-6} 5$ α (N)= $1.552 \times 10^{-7} 22$; α (IPF)= $1.297 \times 10^{-6} 18$ E _{γ} : from (⁴⁸ Ca, 2α 3n γ). Other: 1204.66 18 from (¹⁸ O,3n γ). Mult.: O+Q from $\gamma\gamma(\theta)$ in (⁴⁸ Ca, 2α 3n γ); M3 and E3 components
1323.704	3/2-	322.36 24 805.84 5 1168.152 30 1236.51 4	4.7 <i>10</i> 100 <i>20</i> 34 <i>7</i>	1001.253 1/2 517.897 3/2 155.510 3/2 87.220 5/2			ruled out by RUL; $\Delta \pi$ =yes based on L(d,p)=L(d,t)=4.

⁶³₂₈Ni₃₅-8

$\frac{y^{(6^{3}\text{Ni}) \text{ (continued)}}{1323.704}}{\frac{3}{3/2^{-}}} \frac{J_{i}}{133.66.5} + \frac{E_{j}^{\frac{1}{2}}}{44.9} + \frac{E_{f}}{0.0} + \frac{J_{f}}{1/2^{-}} + \frac{Mult^{\frac{1}{2}}}{1291.93} + \frac{\alpha^{\frac{1}{2}}}{9.2^{-}} + \frac{\alpha^{\frac{1}{2}}}{1291.93} $		Adopted Levels, Gammas (continued)											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	γ ⁽⁶³ Ni) (continued)												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E _i (level)	J^π_i	J^π_i	E _γ ‡	I _γ ‡	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$lpha^{\dagger}$	Comments			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1323.704	3/2-	- 1:	323.66 5	44 9	0.0	1/2-						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1451.74	$(5/2^-, 7/2^-, 9/2^-)$	-,7/2-,9/2-) 1	364.5 [@] 3	100	87.220	5/2-						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2183.53	$11/2^{(+)}$	2(+)	891.56 10	100	1291.93	$9/2^{+}$	(M1+E2)	0.000286 35	$\alpha(K)=0.000257 \ 31; \ \alpha(L)=2.52\times 10^{-5} \ 31; \ \alpha(M)=3.5\times 10^{-6} \ 4$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										$\alpha(N) = 1.52 \times 10^{-7} \ 18$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										E_{γ} : weighted average of 891.5 <i>I</i> from (⁴ °Ca,2 α 3n γ) and			
$\begin{array}{c} 1 \\ 1 \\ 2261.7 \\ 2261.7 \\ 2174.5 \\ 6 \\ 5 \\ 100 \\ 1 \\ 2174.5 \\ 6 \\ 5 \\ 2174.5 \\ 6 \\ 5 \\ 2174.5 \\ 6 \\ 5 \\ 2174.5 \\ 6 \\ 5 \\ 2174.5 \\ 6 \\ 5 \\ 2174.5 \\ 6 \\ 2174.5 \\ 6 \\ 2174.5 \\ 6 \\ 2174.5 \\ 6 \\ 2174.5 \\ 6 \\ 2174.5 \\ 6 \\ 2174.5 \\ 6 \\ 2177.94 \\ 8 \\ 18.5 \\ 20 \\ 2177.94 \\ 8 \\ 18.5 \\ 20 \\ 2177.94 \\ 8 \\ 18.5 \\ 20 \\ 2177.94 \\ 8 \\ 18.5 \\ 20 \\ 2177.94 \\ 8 \\ 18.5 \\ 20 \\ 2177.94 \\ 8 \\ 18.5 \\ 20 \\ 2177.94 \\ 8 \\ 18.5 \\ 20 \\ 2177.94 \\ 8 \\ 18.5 \\ 20 \\ 2177.94 \\ 8 \\ 18.5 \\ 20 \\ 2177.94 \\ 8 \\ 18.5 \\ 20 \\ 2177.94 \\ 8 \\ 18.5 \\ 20 \\ 2177.94 \\ 8 \\ 18.5 \\ 20 \\ 2177.94 \\ 8 \\ 18.5 \\ 20 \\ 2177.94 \\ 8 \\ 18.5 \\ 20 \\ 2177.94 \\ 8 \\ 18.5 \\ 20 \\ 2177.94 \\ 8 \\ 18.5 \\ 20 \\ 100 \\ 12 \\ 2695.92 \\ 6 \\ 56 \\ 12 \\ 0.0 \\ 1/2 \\ 2695.92 \\ 6 \\ 56 \\ 12 \\ 0.0 \\ 1/2 \\ 2183.53 \\ 11/2 \\ (M1+E2) \\ 0.00067 \\ 15 \\ \alpha(K)=0.00060 \\ 13; \\ \alpha(L)=5.9 \times 10^{-5} \\ 13; \\ \alpha(M)=8.4 \times 10^{-6} \\ 19 \\ \end{array}$										891.70 10 from (10 O,3n γ). Mult : D+O from $2\alpha(\theta)$ in (48 Ca $2\alpha(3n\alpha)$): A π -(no) from			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										level scheme.			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										B(M1)(W.u.)=0.0086 +18-12 if M1, B(E2)(W.u.)=18.7			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										+38–26 if E2.			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2261.7	$(5/2^{-},7/2^{-})$	-,7/2 ⁻) 2	106 ^w 1	63 [©] 13	155.510	3/2-						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2252.05	(1/2 - 2/2)	- 2/2) 2	174.5° 5	100 ^{••} 15	87.220	$5/2^{-}$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2552.95	(1/2, 3/2)	,3/2) 2.	205.00 /	24.2 23	87.220	$\frac{5}{2}$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2695.96	1/2-	- 10	694.60 12	9.2 20	1001.253	$1/2^{-}$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2	177.94 8	18.5 20	517.897	3/2-						
$2814.18 13/2^{+} \qquad 630.5 4 100.0 34 2183.53 11/2^{(+)} (M1+E2) 0.00067 15 \alpha(K) = 0.00060 13; \alpha(L) = 5.9 \times 10^{-5} 13; \alpha(M) = 8.4 \times 10^{-6} 19$			2.	540.45 6	100 11	155.510	$3/2^{-1}$						
	2814-18	13/2+)+	630 5 4	100 0 34	2183 53	1/2 $11/2^{(+)}$	(M1 + E2)	0.00067.15	$\alpha(K) = 0.00060 \ 13^{\circ} \alpha(L) = 5.9 \times 10^{-5} \ 13^{\circ} \alpha(M) = 8.4 \times 10^{-6} \ 19$			
$\alpha(N)=3.6\times10^{-7}$ 8	2011.10	15/2		050.5 1	100.0 57	2105.55	11/2	(1111112)	0.00007 12	$\alpha(\mathbf{N})=3.6\times10^{-7} \ 8$			
E_{γ} : unweighted average of 630.1 <i>l</i> from (⁴⁸ Ca,2\alpha3n\gamma) and										E_{γ} : unweighted average of 630.1 <i>1</i> from (⁴⁸ Ca,2\alpha3n\gamma) and			
630.9 3 from (18 O,3n γ).										630.9 <i>3</i> from $({}^{18}\text{O},3n\gamma)$.			
I_{γ} : from (⁴⁸ Ca, 2\alpha 3n\gamma).										I_{γ} : from (⁴⁸ Ca, $2\alpha 3n\gamma$).			
Mult.: D+Q from $\gamma\gamma(\theta)$ in (*°Ca,2 α 3n γ); $\Delta\pi$ =(no) from										Mult.: D+Q from $\gamma\gamma(\theta)$ in (*°Ca,2 α 3n γ); $\Delta\pi$ =(no) from			
B(M1)(W.u.)=0.128 + 96-39 if M1.										B(M1)(W.u.)=0.128 + 96 - 39 if M1.			
$B(E2)(W.u.)=5.6 \times 10^2 + 42 - 17$ exceeds RUL=300 if E2.										$B(E2)(W.u.)=5.6\times10^2 + 42 - 17$ exceeds RUL=300 if E2.			
1522.48 29 40.0 23 1291.93 9/2 ⁺ E2 0.0001914 27 α (K)=8.63×10 ⁻⁵ 12; α (L)=8.39×10 ⁻⁶ 12;			1:	522.48 29	40.0 23	1291.93	$9/2^{+}$	E2	0.0001914 27	$\alpha(K)=8.63\times10^{-5}$ 12; $\alpha(L)=8.39\times10^{-6}$ 12;			
$\alpha(M) = 1.182 \times 10^{-6} 17$										$\alpha(M) = 1.182 \times 10^{-6} 17$			
$\alpha(N)=5.11\times10^{-6}$ 7; $\alpha(IPF)=9.55\times10^{-5}$ 13 B(E2)(Wn)=2.7 + 20.8										$\alpha(N)=5.11\times10^{-6}$ 7; $\alpha(IPF)=9.55\times10^{-5}$ 13 B(E2)(Wu)=2.7 + 20 8			
E_{ac} : weighted average of 1521.9.4 from (⁴⁸ Ca.2 α 3n γ) and										F_{ac} : weighted average of 1521.9 4 from (⁴⁸ Ca.2 α 3ny) and			
$1522.63 \ 20 \ \text{from } ({}^{18}\text{O},3n\gamma).$										$1522.63 \ 20 \ \text{from (}^{18}\text{O},3n\gamma).$			
I_{γ} : from (⁴⁸ Ca,2\alpha 3n\gamma).										I_{γ} : from (⁴⁸ Ca,2 α 3n γ).			
Mult.: Q from $\gamma\gamma(\theta)$ in (⁴⁸ Ca,2 α 3n γ); M2 ruled out by RUL.										Mult.: Q from $\gamma\gamma(\theta)$ in (⁴⁸ Ca,2 α 3n γ); M2 ruled out by RUL.			
$3236.63?$ $3236.57^a \ 9 \ 100 \ 0.0 \ 1/2^-$	3236.63?		32	236.57 ^{<i>a</i>} 9	100	0.0	1/2-						
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3283.53	$(1/2,3/2,5/2^+)$ $(3/2^+,5/2^+)$	$(3/2,5/2^+)$ 3 + $5/2^+)$ 3	127.91 6	100 42 4 17	155.510	$3/2^{-}$ $3/2^{-}$						

9

⁶³₂₈Ni₃₅-9

 $\gamma(^{63}\text{Ni})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ‡	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	Comments
3633.67	$(3/2^+, 5/2^+)$	3476.4 5	100 6	155.510	3/2-		
3651.00	$15/2^{(+)}$	836.8 1	100 4	2814.18	$13/2^{+}$	D+O	
	,	1467.6 <i>3</i>	33 4	2183.53	$11/2^{(+)}$	0	
3739.04	$(1/2^{-}, 3/2)$	3221.05 8	20.6 8	517.897	3/2-		
		3583.50 10	100 5	155.510	3/2-		
		3651.697	82 5	87.220	5/2-		
		3739.6 7	81 4	0.0	1/2-		
4054.61	$(1/2^+)$	3899.06 9	60 2	155.510	3/2-		
		4054.46 8	100 20	0.0	1/2-		
4312.38	$(1/2^{-}, 3/2^{-})$	3794.19 12	100 8	517.897	3/2-		
	(1)	4225.08 13	85 8	87.220	5/2-		40
4323.98	$17/2^{(+)}$	672.8 1	100 4	3651.00	$15/2^{(+)}$	D+Q	E_{γ}, I_{γ} : from (⁴⁸ Ca, 2\alpha 3n\gamma).
		1510.8 <i>3</i>	41 3	2814.18	$13/2^{+}$	Q	E_{γ}, I_{γ} : from (⁴⁸ Ca, 2 α 3n γ).
4332.0?		4176.1 ^{<i>a</i>} 32	33 33	155.510	3/2-		
		4331.9 ^{<i>a</i>} 8	100 33	0.0	1/2-		
4459.15	(1/2,3/2)	4458.98 14	100	0.0	1/2-		49
4570.19	$15/2^{(+)}$	919.9 2	70.1 32	3651.00	$15/2^{(+)}$	D+Q	E_{γ}, I_{γ} : from (⁴⁸ Ca, 2\alpha 3n\gamma).
		1755.4 2	100.0 32	2814.18	13/2+	D+Q	E_{γ}, I_{γ} : from (⁴⁶ Ca, 2\alpha 3n\gamma).
		2385.7 5	11.7 32	2183.53	$11/2^{(+)}$	Q	E_{γ}, I_{γ} : from (⁴⁸ Ca, 2\alpha 3n\gamma).
4871.6	$(17/2^+)$	2058.3 4	100	2814.18	$13/2^{+}$	Q	E_{γ}, I_{γ} : from (⁴⁸ Ca, 2 α 3n γ).
5178.59	$1/2^{+}$	4660.17 16	73 7	517.897	3/2-		
		5022.72 13	100 7	155.510	$3/2^{-}$		
5291.08	$(17/2^+)$	967.1 2	100	4323.98	$17/2^{(+)}$		E_{γ}, I_{γ} : from (⁴ °Ca, 2 α 3n γ).
5363.92	$(3/2)^{+}$	4362.41 11	100 6	1001.253	1/2		
5520.02	(10/2+)	5209.0 5	63 0	155.510	$\frac{3}{2}$	0	
5539.92	$(19/2^{+})$	969.7 3	52.5	45/0.19	$15/2^{(+)}$	Q	E_{γ}, I_{γ} : from (*°Ca, 2 α 3n γ).
(000.00		1888.9 2	100 4	3651.00	15/2(1)	Q	E_{γ}, I_{γ} : from (⁴⁶ Ca, 2\alpha 3n\gamma).
6299.22	$(21/2^{-})$	759.3 1	100	5539.92	$(19/2^{+})$	D	E_{γ}, I_{γ} : from (⁴⁰ Ca, 2\alpha 3n \gamma).
6502.6	$(21/2^+)$	1211.5 2	100	5291.08	$(17/2^+)$	Q	E_{γ}, I_{γ} : from (⁴ °Ca, 2 α 3n γ).
65/4.16	$(21/2^{+})$	1703.5 4	44 9	48/1.6	$(1/2^{+})$	Q	
((000.070)	1/2+	2249.9 2	100 19	4323.98	$17/2^{(+)}$	Q	
(6838.073)	1/2	14/4.09 10	0.066 13	5363.92	$(3/2)^{+}$		
		1659.38 6	$0.072 \ 14$	51/8.59	$1/2^{+}$		
		2578.88 0	0.145 14	4459.15	(1/2, 3/2) (1/2 - 3/2 -)		
		2323.01 7	0.034 0	4512.58	(1/2, 3/2)		
		2103.43 5	0.140 15	3730 0/	(1/2) (1/2) $(1/2)$		
		3205 60 25	0.306 24	3633.67	(1/2, 3/2) (3/2+5/2+)		
		3554.40 7	0.118 24	3283.53	$(1/2, 3/2, 5/2^+)$		
		3601.39 12	0.0471 24	3236.63?	(-,=,=,=,=,=,=)		

From ENSDF

γ (⁶³Ni) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]
(6838.073)	$1/2^{+}$	4141.96 10	0.593 31	2695.96	$1/2^{-}$	
(00000000)	-/ -	4485.2 5	0.427 21	2352.95	$(1/2^{-},3/2)$	
		5513.95 14	1.95 10	1323.704	3/2-	
		5836.45 29	7.79 27	1001.253	$1/2^{-}$	
		6319.81 27	4.77 24	517.897	3/2-	
		6682.40 26	1.72 7	155.510	3/2-	
		6837.92 26	100 5	0.0	$1/2^{-}$	
7488.2	$(25/2^{-})$	1189.0 2	100	6299.22	$(21/2^{-})$	Q
8019.8	$(25/2^+)$	1517.2 2	100	6502.6	$(21/2^+)$	Q
8265.1	$(25/2^+)$	1690.9 2	100	6574.16	$(21/2^+)$	Q
9844.2	$(29/2^+)$	1824.4 2	100	8019.8	$(25/2^+)$	Q
10045.9	$29/2^{+}$	1780.8 2	100	8265.1	$(25/2^+)$	Q
11945.7	$(33/2^+)$	2101.4 2	100	9844.2	$(29/2^+)$	Q
11963.8	$(33/2^+)$	1917.9 2	100	10045.9	$29/2^{+}$	Q
14051.5	$(37/2^+)$	2087.6 3	100	11963.8	$(33/2^+)$	Q
14170.1	$(37/2^+)$	2224.4 3	100	11945.7	$(33/2^+)$	Q
16197.5	$(41/2^+)$	2027.3 2	100	14170.1	$(37/2^+)$	Q
16293.4	$(41/2^+)$	2241.9 5	100	14051.5	$(37/2^+)$	Q
18337.0	$(45/2^+)$	2139.5 3	100	16197.5	$(41/2^+)$	Q
18772.3	$(45/2^+)$	2478.8 21	100	16293.4	$(41/2^+)$	Q
20942.5	$(49/2^+)$	2605.4 4	100	18337.0	$(45/2^+)$	Q
21408.5	$(49/2^+)$	2636.2 12	100	18772.3	$(45/2^+)$	Q
23886.1	$(53/2^+)$	2943.6 12	100	20942.5	$(49/2^+)$	Q
24500.0	$(53/2^+)$	3091.4 18	100	21408.5	$(49/2^+)$	
27223.6	$(57/2^+)$	3337.4 <i>13</i>	100	23886.1	$(53/2^+)$	
621.6+x	J+2	621.6 4	100	х	J≈(25/2 ⁻)	Q
1600.4+x	J+4	978.8 <i>3</i>	100	621.6+x	J+2	Q
2901.9+x	J+6	1301.5 <i>3</i>	100	1600.4+x	J+4	Q
4541.2+x	J+8	1639.2 5	100	2901.9+x	J+6	Q
6478.8+x	J+10	1937.6 5	100	4541.2+x	J+8	Q
8766.9+x	J+12	2288.1 9	100	6478.8+x	J+10	Q
11475.0+x	J+14	2708.0 14	100	8766.9+x	J+12	Q
14550.6+x	J+16	3075.5 14	100	11475.0+x	J+14	

[†] Additional information 3. [‡] From (n,γ) E=thermal up to 6838 level and from $({}^{48}Ca,2\alpha 2n\gamma)$ above that, unless otherwise noted. [#] From $\gamma(\theta)$ and $\gamma\gamma(\theta)$ in $({}^{48}Ca,2\alpha 3n\gamma)$, unless otherwise noted. [@] From ${}^{63}Co \beta^{-}$ decay. [&] From ${}^{48}Ca({}^{18}O,3n\gamma)$.

11

^{*a*} Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{63}_{28}\rm{Ni}_{35}$

 $^{63}_{28}{
m Ni}_{35}$

Level Scheme (continued)

⁶³₂₈Ni₃₅

 $^{63}_{28}{
m Ni}_{35}$