26 Mg(48 Ca,2 α 3n γ) 2013Al19

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 196,17 (2024)	30-Sep-2023

Adapted from the XUNDL dataset for 2013Al19 compiled by D. Symochko (IKP, TU, Darmstadt) and B. Singh (McMaster), on January 5, 2014.

2013A119: E=275, 290 and 320 MeV ⁴⁸Ca beams were provided by the ATLAS accelerator at ANL. Target was 0.973 mg/cm² self-supporting ²⁶Mg. Reaction products were analyzed by Argonne Fragment Mass Analyzer (FMA). γ rays were detected with Gammasphere array consisting of 101 Compton-suppressed Ge detectors. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma(\theta)$, $\gamma\gamma(\theta)$, Doppler-shift attenuation. Deduced levels, J, π , band assignments, deformation parameter, γ -ray multipolarities. Comparison with shell model and with cranked Nilsson-Strutinsky calculations.

⁶³Ni Levels

Configurations are listed in terms of valence holes or particles: $[p_1(\pm)p_2,n_1(\pm)n_2]$, where p_1 , n_1 =number of proton or neutron holes in $1f_{7/2}$ orbital; p_2 , n_2 =number of neutron or proton particles in $1g_{9/2}$ orbital, relative to a closed ⁵⁶Ni core. The (\pm) notation refers to α =+1/2 and α =-1/2 signature.

E(level) [†]	$J^{\pi \ddagger}$	Comments
87.22	5/2-	Additional information 1. E(level), J^{π} : from Adopted Levels.
1291.93 [#] 10	9/2+	
2183.46 [#] 14	$11/2^+$	
2813.59 [#] 17	$13/2^{+}$	
3650.41 [#] 19	$15/2^+$	
4323.25 [#] 21	$17/2^{+}$	
4569.17 23	$15/2^{+}$	
4870.8 [@] 6	$17/2^{+}$	
5290.36 ^{&} 29	$(17/2^+)$	J^{π} : 967 $\gamma(\theta)$ gives (17/2,19/2,21/2); tentative assignment of 17/2 ⁺ is from the comparison with cranked Nilsson-Strutinsky model calculations by authors.
5539.20 25	$19/2^+$	
6298.51 27	21/2-	
6501.9 ^{c} 4	$(21/2^+)$	
6573.26 ^{°°} 29	$21/2^+$	
1487.52.54	25/2 (25/2 ⁺)	
$8019.1^{\circ} 4$	$(25/2^{+})$	
8264.2° 4	25/2	
9843.5 ^{cc} 5	$(29/2^+)$	
10045.0 4	29/2	
11945.0 5	$(33/2^+)$	
11962.9 [®] 5	33/2+	
14050.6 ^w 6	37/2+	
14169.4 ^a 6	$(37/2^+)$	
16196.7 ^{&} 6	$(41/2^+)$	
16292.5 ^{^w} 8	$41/2^{+}$	
18336.3 7	$(45/2^+)$	
18771.4 ^w 22	$45/2^{+}$	
20941.7 8	$(49/2^+)$	
21407.6 [@] 25	49/2+	

²⁶Mg(⁴⁸Ca, 2α 3n γ) 2013Al19 (continued)

⁶³Ni Levels (continued)

E(level) [†]	J ^{π‡}	Comments
23885.4 ^{&} 15	(53/2+)	
24499.1 [@] 31	$(53/2^+)$	
27222.9 ^{&} 20	$(57/2^+)$	
x ^a	J≈(25/2 ⁻)	Additional information 2.
		E(level), J^{π} : x ≈ 12.7 MeV and $J^{\pi} \approx 25/2^{-}$ estimated from comparison of energies and spins of observed bands in Fig. 6 in 2013A119.
621.6+x ^a 4	J+2	
1600.4+x ^{<i>a</i>} 5	J+4	
2901.9+x ^a 6	J+6	
4541.2+x ^a 8	J+8	
6478.8+x ^a 9	J+10	
8766.9+x ^a 13	J+12	
11475.0+x ^{<i>a</i>} 19	J+14	
$14550.6 + x^a 24$	J+16	

[†] From least-squares fit to γ -ray energies, unless otherwise noted.

[‡] From 2013All9 based on known assignments of low-lying levels, measured $\gamma\gamma(\theta)$, band assignments and decay pattern. When considered in Adopted Levels, the firm assignments for high-spin states from this dataset will be placed in parentheses if there are no strong supporting arguments. For yrast levels, it is assumed spin ascends as energy increases.

[#] Band(A): Band based on 1292, $9/2^+$ level.

[@] Band(B): Band based on 4871, $17/2^+$ level. Q(transition)=2.4 +17-12 (deduced $\beta_2=0.43$ +25-20). Proposed configuration= $[31,0^{(-)}2]$.

& Band(C): Band based on 5291, $(17/2^+)$ level. Q(transition)=1.9 +13-12 (deduced $\beta_2=0.35+20-21$). Proposed configuration=[31,0⁽⁺⁾2]. Band crossing at $\hbar\omega\approx 1.1$ MeV by configuration=[2(-1)1,0⁽⁺⁾2] which results in backbending.

^a Band(D): Band based on J (25/2⁻). Band feeds mostly 21/2⁻ state at 6299 level. Direct transition to 21/2⁻ and thus yrast character of the band is in contradiction with measured relative intensities of three bands.

$\gamma(^{63}\text{Ni})$

Angular correla	ation ratio $R_{AC} = I\gamma(\theta_{0^{\circ}})/I\gamma(\theta_{90})$	•), with $I\gamma(\theta)$ obtained by	gating on a stretched-quadrupole transitions at any
angle. Expec	ted R_{AC} values are >1 for stre	etched Q-Q sequence, and	<1 for stretched Q-D sequence (2013Al19).

${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [@]	Comments
621.6 4	7.6 17	621.6+x	J+2	х	J≈(25/2 ⁻)	Q	R _{AC} =1.32 15.
630.1 <i>1</i>	100.0 34	2813.59	$13/2^+$	2183.46	$11/2^{+}$	D+Q ^a	$A_2 = -0.07 \ 3; \ A_4 = -0.07 \ 4$
							R _{AC} =1.07 3.
672.8 <i>1</i>	60.5 25	4323.25	$17/2^{+}$	3650.41	$15/2^{+}$	D+Q	$A_2 = -0.13 \ l; A_4 = +0.01 \ l$
							R _{AC} =0.93 4.
759.3 1	44.4 10	6298.51	$21/2^{-}$	5539.20	$19/2^{+}$	D	$A_2 = -0.21 \ I; A_4 = +0.02 \ 2$
						~	R _{AC} =0.75 9.
836.8 <i>1</i>	71.1 27	3650.41	$15/2^{+}$	2813.59	$13/2^{+}$	$D+Q^{a}$	$A_2 = +0.03 2; A_4 = -0.21 3$
						_	R _{AC} =1.24 5.
891.5 <i>1</i>	93.6 28	2183.46	$11/2^{+}$	1291.93	9/2+	D+Q ^a	$A_2 = +0.15 \ I; A_4 = -0.14 \ I$
							R _{AC} =1.24 <i>6</i> .
919.9 [‡] 2	26.3 12	4569.17	$15/2^{+}$	3650.41	$15/2^{+}$	D+Q	$A_2 = +0.065$
							E_{γ} : very poor fit and omitted in the fitting;
							level-energy difference=918.75.
							R _{AC} =1.12 18.

²⁶Mg(⁴⁸Ca, 2α 3n γ) **2013Al19** (continued)

$I_{\gamma}^{\#}$ $E_{\gamma}^{\#}$ Mult.@ E_i (level) J_i^{π} J_f^{π} Comments E_f 5290.36 4323.25 967.1 2 16.1 31 $(17/2^+)$ $17/2^{+}$ A₂=+0.14 6 RAC=1.43 21. Mult.: Stretched Q from RAC seems inconsistent with $\Delta J=0$. 969.7 3 19.9 18 5539.20 $19/2^{+}$ 4569.17 $15/2^+$ Q A₂=+0.15 2; A₄=-0.19 3 R_{AC}=1.09 11. 978.8 3 8.7 17 A₂=+0.22 6; A₄=-0.21 8 1600.4 + xJ+4621.6+x J+2 Q R_{AC}=1.37 12. 1189.0 2 39.2 12 7487.52 $25/2^{-}$ 6298.51 $21/2^{-}$ Q A₂=+0.04 4; A₄=-0.22 6 R_{AC}=1.48 13. 1204.7 1 $9/2^{+}$ 1291.93 87.22 $5/2^{-}$ O+Q A₂=+0.39 1; A₄=-0.07 3 R_{AC}=1.33 7. 0<mark>&</mark> 1211.5 2 36.2 31 6501.9 $(21/2^+)$ 5290.36 $(17/2^+)$ A2=+0.09 8; A4=+0.33 10 RAC=1.50 11. 1301.5 3 9.4 16 2901.9+x J+6 Q A₂=+0.45 12 1600.4+x J+4 R_{AC}=1.11 8. 1467.6[†] 3 23.7 27 3650.41 $15/2^{+}$ 2183.46 $11/2^+$ Q $A_2 = +0.21 5; A_4 = -0.23 6$ $E_{\boldsymbol{\gamma}} {:}$ uncertainty multiplied by a factor of 2 in the fitting; level-energy difference=1466.94. R_{AC}=1.27 7. 1510.8[†] 3 24.8 18 4323.25 $17/2^{+}$ $13/2^{+}$ Q A₂=0.00 28 2813.59 E_{γ} : uncertainty multiplied by a factor of 3 in the fitting; level-energy difference=1509.64. R_{AC}=0.81 7. 1517.2 2 33.1 44 8019.1 $(25/2^+)$ 6501.9 $(21/2^+)$ Q A₂=+0.11 6; A₄=-0.40 8 RAC=1.50 7. $13/2^{+}$ $9/2^{+}$ 1521.9 4 40.0 23 2813.59 1291.93 A₂=+0.17 *1*; A₄=-0.19 2 Q R_{AC}=0.96 7. 4541.2+x 1639.2 5 5.5 15 J+82901.9+x J+6 Q A₂=+0.47 12; A₄=-0.30 15 R_{AC}=1.55 13. 1690.9 2 21.4 35 8264.2 $25/2^+$ 6573.26 $21/2^{+}$ Q A₂=+0.15 8; A₄=-0.22 11 R_{AC}=1.31 8. 1703.5[†] 4 A₂=+0.02 8; A₄=0.00 11 7.4 15 6573.26 $21/2^{+}$ 4870.8 $17/2^{+}$ 0 E_{γ} : uncertainty multiplied by a factor of 2 in the fitting; level-energy difference=1702.4. E_{γ} : level-energy difference=1702.6. R_{AC}=1.72 15. D+Q^a 1755.4 2 37.5 12 4569.17 $15/2^{+}$ 2813.59 $13/2^{+}$ A₂=+0.07 3; A₄=-0.14 4 RAC=1.59 12. 1780.8 2 20.9 33 10045.0 $29/2^{+}$ $25/2^+$ $A_2 = +0.18 2; A_4 = -0.27 3$ 8264.2 Q R_{AC}=1.52 9. 1824.4 2 26.4 24 9843.5 $(29/2^+)$ 8019.1 $(25/2^+)$ Q A₂=+0.15 20 RAC=1.51 10. 1888.9 2 38.1 16 5539.20 $19/2^{+}$ $15/2^{+}$ A₂=+0.04 2; A₄=-0.19 3 3650.41 Q R_{AC}=1.21 7. Q[&] 1917.9 2 17.4 26 11962.9 $33/2^{+}$ 10045.0 $29/2^{+}$ A₂=+0.10 6; A₄=+0.18 9 RAC=1.01 8. 1937.6 5 5.0 13 6478.8+x J+104541.2+x J+8 Q A2=0.00 13; A4=-0.53 18 R_{AC}=1.46 12. 2027.3 2 16196.7 A₂=+0.23 9; A₄=-0.55 12 13.3 17 $(41/2^+)$ 14169.4 $(37/2^+)$ Q R_{AC}=1.21 19. 2058.3 4 11.7 16 4870.8 $17/2^{+}$ 2813.59 $13/2^{+}$ Q A₂=+0.41 12; A₄=-0.15 15

γ (⁶³Ni) (continued)

Continued on next page (footnotes at end of table)

$^{26}\mathrm{Mg}(^{48}\mathrm{Ca,}2\alpha3\mathrm{n}\gamma)$ 2013Al19 (continued)

$\gamma(^{63}\text{Ni})$ (continued)

${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^π	E_{f}	J_f^{π}	Mult.@	Comments
							E_{γ} : uncertainty multiplied by a factor of 2 in the fitting; level-energy difference=2057.2. E_{γ} : level-energy difference=2057.4.
2087.6 3	16.1 22	14050.6	37/2+	11962.9	33/2+	Q	$A_2 = +0.12 4; A_4 = -0.32 6$ $B_{AC} = 1.37 14.$
2101.4 2	23.5 22	11945.0	$(33/2^+)$	9843.5	$(29/2^+)$	Q	$A_2 = +0.47$ 22; $A_4 = -0.43$ 28 $R_{AC} = 1.76$ 15.
2139.5 3	8.9 13	18336.3	$(45/2^+)$	16196.7	$(41/2^+)$	Q	$A_2 = +0.53 \ 42$ $R_{AC} = 1.66 \ 29.$
2224.4 3	12.4 20	14169.4	$(37/2^+)$	11945.0	$(33/2^+)$	Q	$R_{AC} = 1.52 \ 23.$
2241.9 5	16.8 <i>31</i>	16292.5	$41/2^{+}$	14050.6	$37/2^+$	Q	$R_{AC} = 1.24 \ I8.$
2249.9 2	16.8 <i>31</i>	6573.26	21/2+	4323.25	17/2+	Q	$A_2 = +0.31 \ 4; A_4 = -0.13 \ 5$ $R_{AC} = 1.21 \ 13.$
2288.1 9	2.2 11	8766.9+x	J+12	6478.8+x	J+10	Q	$A_2 = +0.36 \ 15; \ A_4 = -0.31 \ 20$ $R_{AC} = 1.38 \ 26.$
2385.7 5	4.4 12	4569.17	$15/2^{+}$	2183.46	$11/2^{+}$	Q	
2478.8 21	1.1 11	18771.4	45/2+	16292.5	41/2+	Q	$A_2 = +0.49 \ 9; A_4 = -0.06 \ 12 R_{AC} = 2.25 \ 39.$
2605.4 4	6.5 13	20941.7	$(49/2^+)$	18336.3	$(45/2^+)$	Q	$A_2 = +0.55 22$ $B_{\Delta C} = 0.94 14$
2636.2 12	1.7 11	21407.6	49/2+	18771.4	45/2+	Q	$A_2 = +0.57 \ 34$ $B_{\Delta C} = 1.95 \ 24.$
2708.0 14	1.3 9	11475.0+x	J+14	8766.9+x	J+12	0	$R_{AC} = 1.56 \ 27.$
2943.6 12	1.5 9	23885.4	$(53/2^+)$	20941.7	$(49/2^+)$	õ	$R_{AC} = 1.02 \ 18.$
3075.5 14	< 0.5	14550.6+x	J+16	11475.0+x	J+14		
3091.4 18	< 0.5	24499.1	$(53/2^+)$	21407.6	$49/2^{+}$		
3337.4 13	< 0.5	27222.9	$(57/2^+)$	23885.4	$(53/2^+)$		

[†] Poor fit; uncertainty multiplied by a factor in the fitting.
[‡] Very poor fit and omitted in the fitting.

[#] From 2013Al19, unless otherwise noted.

^(e) Deduced based on $\gamma(\theta)$ and $\gamma\gamma(\theta)$ data in 2013A119. Due to no supporting data for magnetic and electric characters of transitions in 2013A119, the evaluator has replaced E3 with O, E2 and M2 with Q, E1 and M1 with D.

[&] Positive A₄ is inconsistent with $\Delta J=2$, quadrupole transition. A₄ should be negative. ^{*a*} Negative A₄ is inconsistent with $\Delta J=1$, D+Q transition. A₄ should be positive.

⁶³₂₈Ni₃₅

26 Mg(48 Ca,2 α 3n γ) 2013Al19

 $^{63}_{28}{
m Ni}_{35}$

26 Mg(48 Ca,2 α 3n γ) 2013Al19

63 28Ni35