40 Ca(28 Si, α p γ) 2021Ru07

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 196,17 (2024)	30-Sep-2023

Adapted from a XUNDL dataset for 2021Ru07 compiled by B. Singh, on March 10, 2021.

2021Ru07: E=122 MeV ²⁸Si beam was produced from ATLAS at ANL. Target was 0.5 mg/cm² 99.975% enriched ⁴⁰Ca enclosed between two thin gold layers. γ rays were detected with the Gammasphere array of 101 Ge detectors and charged particles were detected with an 4π Microball array of 95 CsI(Tl) detectors. Measured E γ , I γ , four-fold $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$ (DCO), (particle)- γ -coin. Deduced high-spin levels, J, π , band structures. Comparisons with detailed shell model calculations for low-spins and cranked Nilsson-Strutinsky calculations for high-spin levels.

1991Ba20: E=90 MeV ²⁸Si beam was produced from the University of Pennsylvania tandem Van de Graaff accelerator. Target was 350 μ g/cm² isotopically enriched ⁴⁰Ca on a 30 mg/cm² Au backing. γ rays were detected with four Ge detectors and charged particles were detected an 4π array of phoswich detectors. Measured E γ , I γ , particle- γ -coin(t), $\gamma\gamma$ -coin. Data reported in 1991Ba20 are mostly from their measurement of ⁴⁰Ca(²⁹Si, α pn γ). See that dataset for details.

⁶³Ga Levels

Configurations of bands are proposed by 2021Ru07, based on cranked Nilsson-Strutinsky calculations in terms of [(p1)p2p3;(n1)n2n3] labels, where (p1) and (n1) indicate proton and neutron holes, respectively in f_{7/2} orbital; p2 and n2, the number of respective particles in the upper *fp* shell; and p3 and n3, the number of respective g_{9/2} particles. In addition, subscripts + and – indicate $\alpha = +1/2$ and $\alpha = -1/2$ signature partners, respectively.

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0	3/2-#	
75.31 22	$(5/2)^{-\#}$	
443.24 17	$(3/2^{-})$	
722.30 17	(5/2 ⁻)	
1152.50 42	$(9/2^{-})^{\#}$	
1421.68 24	$7/2^{(-)#}$	
2046.39 [@] 35	$(9/2^+)^{\#}$	
2940.7 [@] 5	$(13/2^+)^{\#}$	
4080.5 [@] 7	$17/2^{+}$	
5244.4 10		
5715.9 [@] 9	$21/2^+$	
5853.0 ^{&} 8	$19/2^{(-)}$	
6501.7 <mark>&</mark> 9	$23/2^{(-)}$	
7335.3 ^b 11	21/2	
7657.0 ^C 10	(23/2)	
7710.7 ^{&} 9	$27/2^{(-)}$	
7912.2 ^a 10	$25/2^{(-)}$	
8214.1 ^b 10	25/2	
8857.4 ^C 11	(27/2)	
9040.5 ^{&} 10	$31/2^{(-)}$	
9256.2 ^{<i>a</i>} 10	$29/2^{(-)}$	
9483.4 <mark>6</mark> 11	29/2	
10161.6? ^c 15	(31/2)	Reversed ordering of the 1813-1304 γ cascade is possible, which can give level energy as 10670 keV instead of 10161 keV.
10870.2 ^{&} 12	$35/2^{(-)}$	
10908.2 ^b 11	33/2	

⁴⁰Ca(²⁸Si, α p γ) 2021Ru07 (continued)

⁶³Ga Levels (continued)

E(level) [†]	J ^π ‡
10982.1 ^{<i>a</i>} 11	33/2(-)
11974.3 ^c 18	
12738.5 ^{<i>a</i>} 12	37/2(-)
12833.3° <i>13</i> 14213.9 <i>21</i>	37/2 39/2
14465.2^{b} 15	41/2
14542.5 26	(39/2)
15141? 6	(35/2 ⁻)
15766.3 ^{<i>a</i>} 40	$(39/2^{-})$
16298.8 43 16428 62 43	(39/2)
16634.7 28	(3)[2])
16696 <i>f</i> 6	$(39/2^{-})$
16756.9 ^e 25	$(41/2^{-})$
17172.3 24	12/2
17193.5 20	43/2
17575.1 ⁸ 44	$(41/2^{-})$
17643.4 32	$(41/2^{-})$
17661.8 32	$(41/2^{-})$
17755 8 41	(41/2)
17735.841 18001 0 ^d 12	(41/2)
18091.0 42 18453.2 <i>31</i>	(+3/2)
18525 ^f 6	$(43/2^{-})$
18933.0 ^e 28	$(45/2^{-})$
19034.6 <i>33</i> 19538 <mark>8</mark> 5	$(45/2^{-})$
$19390 - 9^{h}$	$(15/2^{-})$ $(45/2^{-})$
19765.2^{i} 41	$(45/2^{-})$
20101.4 ^{<i>d</i>} 44	$(47/2^{-})$
20627 ^f 6	$(47/2^{-})$
21377.9 ^e 33	(49/2-)
21807 ⁸ 5	$(49/2^{-})$
22073.3 ⁿ 35	$(49/2^{-})$
22115.9 ^{<i>i</i>} 43	(49/2 ⁻)
22613 ^d 5	$(51/2^{-})$
$23071^{J} 6$	$(51/2^{-})$
$24250.5^{\circ}58$	$(53/2^{-})$
$24797^{i}5$	$(53/2^{-})$
24901.7 ^h 39	$(53/2^{-})$
25954 ^f 7	$(55/2^{-})$
25988? ^d 6	$(55/2^{-})$
27614 <mark>8</mark> 5	(57/2-)
27870 ⁱ 5	$(57/2^{-})$
28124.1 ^h 44	$(57/2^{-})$
29440? <mark>/</mark> 7	(59/2 ⁻)
31329? <mark>1</mark> 6	$(61/2^{-})$

⁴⁰Ca(²⁸Si,αpγ) **2021Ru07** (continued)

⁶³Ga Levels (continued)

E(level) [†]	Jπ‡		Comments
xj	J1	Additional information 1. E(level): x=19000 (estimated by 2021Ru07).	
2191.2+x ^j 13 2227.8+x? 24	J1+2		
4661.7+x ^j 19	J1+4		
7339.2+x ^j 25	J1+6		
$10254.2 + x^{j} 30$	J1+8		
13502.9+x ^j 37	J1+10		
y ^k	J2	Additional information 2. E(level): y=20300 (estimated by 2021Ru07).	
2327.1+y ^k 14	J2+2		
4896.3+y ^k 21	J2+4		
7673.0+y ^k 26	J2+6		
10743.7+y ^k 33	J2+8		
14206.8+y ^k 41	J2+10		
z? ^l	J3	Additional information 3. E(level): z=19200 (estimated by 2021Ru07).	
2200.0+z ^l 19	J3+2		
4645.0+z ^l 25	J3+4		
7350.6+z ^l 30	J3+6		
10382.4+z ^l 37	J3+8		
$13792 + z^l 6$	J3+10		

 † From a least-squares fit to $\gamma\text{-ray energies.}$

[‡] As assigned by 2021Ru07, based on previous assignments for low-lying levels, multipolarities and band structures in the present work, unless otherwise noted. The firm assignments in this work will be considered tentative and placed inside parentheses when considered in Adopted Levels if there are no strong supporting arguments.

- # From Adopted Levels.
- ^(a) Band(A): Band B1 based on $(9/2^+)$, $\alpha = +1/2$. Configuration= $[21_+; 40]$ (2021Ru07).
- & Band(B): Band B2 based on $19/2^{(-)}$, $\alpha = -1/2$. Configuration= $[21_+; 3_+1_+]$ (2021Ru07), bands B2 and B3 considered as signature partners.
- ^{*a*} Band(b): Band B3 based on $25/2^{(-)}$, $\alpha = +1/2$. Configuration= $[21_+; 3_-1_+]$ (2021Ru07), bands B2 and B3 considered as signature partners.
- ^b Band(C): Band B4 based on 21/2, $\alpha = +1/2$. Configuration=[21₊; 22] (2021Ru07).
- ^{*c*} Band(D): Band B5 based on (23/2), $\alpha = -1/2$. Configuration=[21₊; 3₊1₊] (2021Ru07), interpreted as excited BAND of the same configuration as that for band B2.
- ^d Band(E): Band Q1 based on (39/2⁻), 15766 keV, $\alpha = -1/2$. Configuration=[(1)22; 22] (2021Ru07), bands Q1 and Q2 considered as signature partners.
- ^{*e*} Band(e): Band Q2 based on (41/2⁻), 16757 keV, α =+1/2. Configuration=[(1)22; 22] (2021Ru07), bands Q1 and Q2 considered as signature partners.
- ^{*f*} Band(F): Band Q3 based on (39/2⁻), 16696 keV, $\alpha = -1/2$. Configuration=[(1)22; (1)3₊2] (2021Ru07), bands Q3 and Q4 considered as signature partners.
- ^g Band(f): Band Q4 based on (41/2⁻), 17575 keV, $\alpha = +1/2$. Configuration=[(1)22; (1)3₊2] (2021Ru07), bands Q3 and Q4 considered as signature partners.
- ^{*h*} Band(G): Band Q5 based on (41/2⁻), $\alpha = +1/2$. The band starts at 17643 keV, (41/2⁻) or 17661 keV, (41/2⁻). Configuration=[(1+)22; (1+)3+2] (2021Ru07), bands Q5 and Q6 considered as signature partners.

From ENSDF

⁴⁰Ca(²⁸Si, α pγ) **2021Ru07** (continued)

⁶³Ga Levels (continued)

^{*i*} Band(g): Band Q6 based on (41/2⁻), $\alpha = +1/2$. The band starts at 17706 keV, (41/2⁻) or 17755 keV, (41/2⁻).

- Configuration=[(1_)22; (1_)3_2] (2021Ru07), bands Q5 and Q6 considered as signature partners.
- ^{*j*} Band(H): $\Delta J=2$ band Q7. Estimated energy of the bandhead=19000 keV (2021Ru07).
- ^{*k*} Band(I): $\Delta J=2$ band Q8. Estimated energy of the bandhead=20300 keV (2021Ru07).
- ^{*l*} Band(J): $\Delta J=2$ band Q9. Estimated energy of the bandhead=19200 keV (2021Ru07).

$\gamma(^{63}\text{Ga})$

DCO values under comments are for 30° and 83° geometry, with gates on $\Delta J=2$, quadrupole transitions. Expected values are 1.0 for $\Delta J=2$, quadrupole, ≈ 0.6 for $\Delta J=1$, dipole, ≈ 0.9 for $\Delta J=0$, dipole (2021Ru07). Values lower or much higher than 0.6 suggest $\Delta J=1$, mixed M1+E2.

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	Comments
75.4 3	71.5	75.31	(5/2)-	0.0	3/2-		I_{γ} : 2021Ru07 deduced intensity by equating it to that of 1077-keV γ .
279.2 4	0.2 1	722.30	$(5/2^{-})$	443.24	$(3/2^{-})$,
368.0 4	0.7 2	443.24	$(3/2^{-})$	75.31	$(5/2)^{-}$	(D+Q)	DCO≤1
443.3 2	3.6 4	443.24	$(3/2^{-})$	0.0	3/2-	(D+Q)	DCO=0.94 19
							Mult.: assigned by the evaluator based on $\Delta J=(0)$ transition in 2021Ru07; not assigned by the authors.
608.6 <i>6</i>	0.8 2	5853.0	$19/2^{(-)}$	5244.4			
624.7 3	20.5 8	2046.39	$(9/2^+)$	1421.68	$7/2^{(-)}$	D	DCO=0.71 6
647.1 [@] 5	2.0 7	722.30	$(5/2^{-})$	75.31	$(5/2)^{-}$		
648.6 6	75.9 26	6501.7	$23/2^{(-)}$	5853.0	$19/2^{(-)}$	Q	DCO=1.00 6
699.3 <i>3</i>	4.2 3	1421.68	$7/2^{(-)}$	722.30	$(5/2^{-})$	(D+Q)	DCO=1.34 35
722.2 2	2.9 4	722.30	$(5/2^{-})$	0.0	3/2-		
785.8 <i>3</i>	7.4 5	6501.7	$23/2^{(-)}$	5715.9	$21/2^+$	D	DCO=0.73 9
878.9 6	1.7 2	8214.1	25/2	7335.3	21/2		
893.9 [@] 5	81.7 27	2046.39	$(9/2^+)$	1152.50	(9/2 ⁻)		DCO=0.99 5
							DCO for 893.9+894.3.
894.3 [@] 4	100.0 32	2940.7	$(13/2^+)$	2046.39	$(9/2^+)$		DCO=0.99 5
							DCO for 893.9+894.3.
978.6 <i>4</i>	3.8 2	1421.68	$7/2^{(-)}$	443.24	$(3/2^{-})$	(Q)	DCO=1.10 31
1077.2 5	83.3 27	1152.50	$(9/2^{-})$	75.31	$(5/2)^{-}$	Q	DCO=0.99 6
1139.8 4	89.9 29	4080.5	$17/2^{+}$	2940.7	$(13/2^+)$	Q	DCO=1.02 5
1146.8 [@] 8	3.8 <i>3</i>	8857.4	(27/2)	7710.7	$27/2^{(-)}$	(D+Q)	DCO≈1
							Mult.: assigned by the evaluator based on $\Delta J=(0)$ transition in 2021Ru07; not assigned by the authors.
1155.2 6	3.7 3	7657.0	(23/2)	6501.7	$23/2^{(-)}$	(D+Q)	DCO≈1
							Mult.: assigned by the evaluator based on $\Delta J=(0)$ transition in 2021Ru07; not assigned by the authors.
1200.2 8	2.8 3	8857.4	(27/2)	7657.0	(23/2)	(Q)	DCO≈1
1209.1 4	68.7 <i>23</i>	7710.7	$27/2^{(-)}$	6501.7	$23/2^{(-)}$	Q	DCO=1.08 6
1269.2 6	4.1 <i>3</i>	9483.4	29/2	8214.1	25/2	Q	DCO=0.94 17
1304.2 10	2.1 2	10161.6?	(31/2)	8857.4	(27/2)	(Q)	DCO=1.02 23
							Ordering of the 1813-1304 γ cascade could be reversed.
1329.6 5	48.2 17	9040.5	$31/2^{(-)}$	7710.7	$27/2^{(-)}$	Q	DCO=1.14 7
1344.0 8	2.2 2	9256.2	$29/2^{(-)}$	7912.2	$25/2^{(-)}$		

Continued on next page (footnotes at end of table)

$ \frac{Y^{(6)}Ga}{141.06} \begin{pmatrix} F_{1}^{\dagger} & F_{1$				40	Ca(²⁸ Si, <i>a</i> p)	γ) 2021	Ru07 (co	ntinueo	1)		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	γ (⁶³ Ga) (continued)										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ #	Comments		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1410.6 6	3.4.3	7912.2	$25/2^{(-)}$	6501.7	$23/2^{(-)}$	D+O		DCO=0.36 8		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$14216^{@}6$	14.1.5	1421.68	7/2(-)	0.0	3/2-	0		DCO=1.00.8		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$1424.9^{@}$ 7	474	10908.2	33/2	9483.4	29/2	Q O		DCO = 1.06.8		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1545.6.7	533	9256.2	$29/2^{(-)}$	7710.7	$27/2^{(-)}$	Q+D	>1	DCO=0.31.6		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15551° 12	102	16696	$(30/2^{-})$	151/12	$(35/2^{-})$	Q.D	~ 1	200 0.510		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1631.9 8	6.9 4	14465.2	(3)/2	12833.3	(35/2)	0		DCO=0.95 7		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$1635.4^{@}8$	10.5.5	5715.9	$21/2^+$	4080.5	$17/2^{+}$	õ		DCO=1.16 13		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1662.3 ^{&} 11	071	18091.0	$(43/2^{-})$	16428.62	$(39/2^{-})$	Č.				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1712.4.8	0.8.2	8214.1	25/2	6501.7	$23/2^{(-)}$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1726.3 9	4.0 3	10982.1	$33/2^{(-)}$	9256.2	$29/2^{(-)}$	0		DCO=1.06 16		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1756.4 8	5.5 4	12738.5	$37/2^{(-)}$	10982.1	$33/2^{(-)}$	ò		DCO=1.15 17		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1772.2 7	76.6 27	5853.0	$19/2^{(-)}$	4080.5	$17/2^{+}$	D		DCO=0.54 3		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1773.0 [@] 10	5.4 7	9483.4	29/2	7710.7	27/2 ⁽⁻⁾	(D)		DCO=0.62 8 Mult.: assigned by the evaluator based on ΔJ =1 transition from DCO; not assigned by 2021Ru07.		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1792.1 11	1.7 2	18091.0	$(43/2^{-})$	16298.8	$(39/2^{-})$	(Q)		DCO=1.05 16		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1804.0 ^{&} 11	1.7 3	7657.0	(23/2)	5853.0	$19/2^{(-)}$					
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	1812.7 10	1.7 3	11974.3		10161.6?	(31/2)			Ordering of the 1813-1304 γ cascade could be reversed.		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	1828.8 [@] 12	2.4 3	18525	$(43/2^{-})$	16696	(39/2 ⁻)					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1829.8 8	21.0 9	10870.2	$35/2^{(-)}$	9040.5	$31/2^{(-)}$	Q		DCO=1.02 7		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1867.3 [@] 9	7.5 4	10908.2	33/2	9040.5	31/2 ⁽⁻⁾	(D)		 DCO=0.35 3 Mult.: assigned by the evaluator based on ΔJ=1 transition from DCO; not assigned by 2021Ru07. 		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1868.2 9	7.7 4	12738.5	$37/2^{(-)}$	10870.2	$35/2^{(-)}$	Q+D	>1	DCO=0.27 3		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1924.8 9	9.6 5	12833.3	37/2	10908.2	33/2	Q		DCO=0.95 7		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1941.2 9	5.9 4	10982.1	$33/2^{(-)}$	9040.5	$31/2^{(-)}$	Q+D	>1	DCO=0.25 8		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1962.7 [@] 13	2.6 2	19538	(45/2 ⁻)	17575.1	(41/2 ⁻)	(Q)		DCO=0.84 <i>17</i> DCO for 1962.7+1963.4.		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1963.4 [@] 10	1.8 2	12833.3	37/2	10870.2	35/2 ⁽⁻⁾	(D)		 DCO=0.84 <i>17</i> Mult.: assigned by the evaluator based on ΔJ=1 transition from DCO; not assigned by 2021Ru07. DCO for 1962.7+1963.4. 		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2009.3 [@] 14	0.7 2	19765.2	$(45/2^{-})$	17755.8	$(41/2^{-})$	(Q)		DCO=1.12 14		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2010.4 13	4.2 3	20101.4	$(47/2^{-})$	18091.0	$(43/2^{-})$	(Q)		DCO=1.12 14		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2041.1 12	1.3 2	19702.9	$(45/2^{-})$	17661.8	$(41/2^{-})$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2058.4 [@] 13	0.5 2	19765.2	(45/2 ⁻)	17706.8	(41/2 ⁻)	(Q)		DCO=1.07 <i>18</i> DCO for 2059.4+2058.4.		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2059.4 [@] 13	1.1 2	19702.9	(45/2 ⁻)	17643.4	(41/2 ⁻)	(Q)		DCO=1.07 <i>18</i> DCO for 2059.4+2058.4.		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2101.6 <i>13</i> 2176.1 <i>13</i>	2.4 <i>3</i> 2.7 <i>2</i>	20627 18933.0	(47/2 ⁻) (45/2 ⁻)	18525 16756.9	(43/2 ⁻) (41/2 ⁻)	(Q) (Q)		DCO=1.11 20 DCO=1.13 16		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2191.2 [@] 13	1.1 <i>1</i>	2191.2+x	J1+2	х	J1					
2214.2 20 0.6 <i>l</i> 16756.9 (41/2 ⁻) 14542.5 (39/2)	2200.0 [@] <i>1</i> 9	0.8 1	2200.0+z	J3+2	z?	J3					
	2214.2 20	0.6 1	16756.9	$(41/2^{-})$	14542.5	(39/2)					
2269.6 14 3.3 2 21807 $(49/2^{-})$ 19538 $(45/2^{-})$ (Q) DCO=1.02 19	2269.6 14	3.3 2	21807	$(49/2^{-})$	19538	$(45/2^{-})$	(Q)		DCO=1.02 19		
2304.2 16 1.1 4 5244.4 2940.7 $(13/2^+)$ 2324.6 13 2.3 2 18091.0 $(43/2^-)$ 15766.3 $(39/2^-)$ (O) DCO=1.21.15	2304.2 <i>16</i> 2324.6 <i>13</i>	1.14 2.32	5244.4 18091 0	$(43/2^{-})$	2940.7 15766 3	$(13/2^+)$ $(39/2^-)$	(0)		DCO=1.21.75		

Continued on next page (footnotes at end of table)

$\frac{{}^{40}\text{Ca}({}^{28}\text{Si},\alpha\text{p}\gamma)}{2021\text{Ru07}(\text{continued})}$									
γ (⁶³ Ga) (continued)									
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult.‡	Comments		
2327.0 [@] 14 2350.7 13 2370.4 13 2399.8 18	1.1 <i>1</i> 1.2 2 2.3 2 0.5 <i>1</i>	2327.1+y 22115.9 22073.3 19034.6	J2+2 (49/2 ⁻) (49/2 ⁻)	y 19765.2 19702.9 16634.7	J2 (45/2 ⁻) (45/2 ⁻)	(Q)	DCO=1.18 21		
2433.8 ^{&} 15	0.7 1	4661.7+x	J1+4	2227.8+x?					
2444.2 [@] 15	1.7 2	23071	(51/2-)	20627	(47/2 ⁻)	(Q)	DCO=1.04 <i>12</i> DCO for 2444.2+2444.8+2444.9.		
2444.8 [@] 17	2.2 2	21377.9	(49/2 ⁻)	18933.0	(45/2 ⁻)	(Q)	DCO=1.04 <i>12</i> DCO for 2444 2+2444 8+2444 9		
2444.9 16	2.0 2	4645.0+z	J3+4	2200.0+z	J3+2	(Q)	DCO=1.04 <i>12</i> DCO for 2444.2+2444.8+2444.9.		
2470.4 14	1.8 2	4661.7+x	J1+4	2191.2+x	J1+2				
2497.9 12	2.6 3	8214.1	25/2	5715.9	$21/2^+$				
2512.0 16	2.1 2	22613	$(51/2^{-})$	20101.4	$(47/2^{-})$	(Q)	DCO=1.19 16		
2569.2 15	2.2.2	4896.3+y	J_{2+4}	2327.1+y	J_{2+2}	(Q)	DCO=1.01 <i>19</i>		
2648.3 15	2.5 2	24456	(53/2)	21807	(49/2)	(Q)	DCO=1.26 21		
2677.4 [®] 16	2.6 2	7339.2+x	J1+6	4661.7+x	J1+4	(Q)	DCO=1.18 17		
2681.3 ^{^w} 16	1.1 2	24797	$(53/2^{-})$	22115.9	$(49/2^{-})$	(Q)	DCO=1.18 17		
2705.5 [@] 17	1.9 2	7350.6+z	J3+6	4645.0+z	J3+4				
2707.0 <i>19</i> 2728.4 <i>17</i>	0.8 2 1.9 2	17172.3 17193.5	43/2	14465.2 14465.2	41/2 41/2	(D)	DCO= 0.63 19 Mult : assigned by the evaluator based on $\Delta I = 1$		
							transition from DCO; not assigned in 2021Ru07.		
2776.6 16 2828.3 17 2858.6 19 2882 6 18	1.7 2 1.6 2 1.3 2 1 3 3	7673.0+y 24901.7 24236.5 25954	J2+6 (53/2 ⁻) (53/2 ⁻) (55/2 ⁻)	4896.3+y 22073.3 21377.9 23071	J2+4 (49/2 ⁻) (49/2 ⁻) (51/2 ⁻)	(Q)	DCO=1.01 22		
2915.0 <i>17</i> 2979.3 <i>22</i> 3014.1 <i>18</i>	2.1 2 0.4 2 1.0 2	10254.2+x 17193.5 17479.4	J1+8 43/2	7339.2+x 14213.9 14465.2	(31/2) J1+6 39/2 41/2	(Q)	DCO=1.18 27		
3031.8 21	1.9 2	10382.4+z	J3+8	7350.6+z	J3+6	(Q)	DCO=1.22 25		
3070.6 [@] 20	1.3 2	10743.7+y	J2+8	7673.0+y	J2+6				
3072.9 ^(a) 23 3158.1 <i>19</i> 3222.3 2 <i>1</i> 3248.6 22 3255.1 22 3343.4 22	0.7 <i>1</i> 1.2 <i>1</i> 0.6 <i>1</i> 1.2 2 0.8 <i>1</i> 1.3 <i>1</i>	27870 27614 28124.1 13502.9+x 7335.3 14213.9	(57/2 ⁻) (57/2 ⁻) (57/2 ⁻) J1+10 21/2 39/2	24797 24456 24901.7 10254.2+x 4080.5 10870.2	(53/2 ⁻) (53/2 ⁻) (53/2 ⁻) J1+8 17/2 ⁺ 35/2 ⁽⁻⁾				
3374.6 <mark>&</mark> 29	0.5 1	25988?	$(55/2^{-})$	22613	$(51/2^{-})$		DCO=1.05 18		
3409.3 44	1.3 2	13792+z	J3+10	10382.4+z	J3+8				
3459.0 ^{@&} 29	0.2 1	31329?	$(61/2^{-})$	27870	$(57/2^{-})$				
3463.0 [@] 24	0.4 1	14206.8+y	J2+10	10743.7+y	J2+8				
3486.8 <mark>&</mark> 26	0.4 1	29440?	$(59/2^{-})$	25954	$(55/2^{-})$				
3671.9 31	0.7 1	14542.5	(39/2)	10870.2	35/2(-)				
3801.3 25	0.8 1	16634.7	× / /	12833.3	37/2				
3987.9 27	0.6 1	18453.2		14465.2	41/2				
4018.5 28	2.5 2	16756.9	$(41/2^{-})$	12738.5	$37/2^{(-)}$	(Q)	DCO=1.17 24		
^x 4344							A weak line present in $\gamma\gamma$ coin spectra for band Q7 could not be placed (2021Ru07).		
4836.4 42	0.7 1	17575.1	$(41/2^{-})$	12738.5	$37/2^{(-)}$				
4895.9 [@] 38	0.9 1	15766.3	$(39/2^{-})$	10870.2	$35/2^{(-)}$	(Q)	DCO=1.05 18		

Continued on next page (footnotes at end of table)

40 Ca(28 Si, α p γ) 2021Ru07 (continued)

$\gamma(^{63}\text{Ga})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$E_f \qquad J_f^{\pi}$	Mult.‡	Comments
4903.7 [@] 41	0.7 1	17643.4	$(41/2^{-})$	12738.5 37/2 ⁽⁻⁾	(Q)	DCO=1.05 18
4924.1 [@] 40	1.0 <i>I</i>	17661.8	$(41/2^{-})$	12738.5 37/2 ⁽⁻⁾	(Q)	DCO=1.05 18
4968.3 [@] 51	0.4 1	17706.8	$(41/2^{-})$	12738.5 37/2 ⁽⁻⁾	(Q)	DCO=1.11 26
5016.9 [@] 55	0.7 1	17755.8	$(41/2^{-})$	12738.5 37/2(-)	(Q)	DCO=1.11 26
5825.6 56	0.6 1	16696	$(39/2^{-})$	10870.2 35/2 ⁽⁻⁾	(Q)	DCO=0.90 37
						Mult .: assigned by the evaluator based on DCO; not

assigned by 2021Ru07.

[†] From 2021Ru07.

[‡] From measured $\gamma\gamma$ (DCO) in 2021Ru07, unless otherwise noted. The evaluator has replaced M1 (or E1) and E2 as reported in 2021Ru07 with D and Q, respectively, considering that there are no supporting data for electric or magnetic characters measured in 2021Ru07. # From DCO ratio of ≈ 0.3 for interband transitions (2021Ru07).

^a Doublet structure.
^b Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

⁶³₃₁Ga₃₂

⁶³₃₁Ga₃₂

⁴⁰Ca(²⁸Si,αpγ) 2021Ru07

 $\frac{\text{Level Scheme (continued)}}{\text{Intensities: Relative I}_{\gamma}}$

 $I_{\gamma} < 2\% \times I_{\gamma}^{max}$ $I_{\gamma} < 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ $\gamma \text{ Decay (Uncertain)}$

⁶³₃₁Ga₃₂

⁶³₃₁Ga₃₂

⁴⁰Ca(²⁸Si,αpγ) 2021Ru07 (continued)

⁶³₃₁Ga₃₂

⁴⁰Ca(²⁸Si,αpγ) 2021Ru07 (continued)

