238 U(64 Ni,X γ) 2007Lu13

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Jun Chen	NDS 196,17 (2024)	30-Sep-2023						

2007Lu13: E=400 MeV ⁶⁴Ni beam was provided by the LNL Tandem-ALPI accelerator. Target was 400 μ g/cm² ²³⁸U. Projectile-like nuclei were analyzed with the PRISMA large acceptance magnetic spectrometer. γ rays were detected with the CLARA array containing 25 Clover Ge detectors with Compton-suppression. Measured E γ , I γ , $\gamma\gamma$ -coin. Deduced levels, J, π . Comparisons with large-scale shell-model calculations.

- 2008HoZP: E=430 MeV/nucleon ⁶⁴Ni beam was produced from the ATLAS accelerator at ANL. Target was 55 mg/cm² isotopically enriched ²³⁸U. γ rays were detected with the Gammasphere array consisting of about 100 HPGe detector module with Compton-suppression. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma\gamma$ -coincidence.
- 2008HoZP concludes that no coincidence relationship could be established for 356 γ , 819 γ and 1404 γ seen in 2007Lu13 in any of the $\gamma\gamma\gamma$ cubes constructed using prompt or delayed time windows, in an attempt to establish coincidence relationship between those transitions. However, that is what should be expected since 356 γ feeding the (5/2⁻) g.s. is not in coincidence with 819 γ and 1404 γ feeding the (9/2⁺) level with unknown excitation energy, based on the proposed level scheme in 2007Lu13. No transition or level that belongs to ⁶³Fe is reported in 2008HoZP.

⁶³Fe Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0	5/2-	J^{π} : from Adopted Levels.
0+x [#]	$(9/2^+)$	Additional information 1.
356.20 20	$(3/2^{-})$	
819.0+x [#] 4	$(13/2^+)$	
2223.1+x [#] 7	$(17/2^+)$	

[†] From $E\gamma$ data.

[‡] Proposed by 2007Lu13 based on shell-model predictions, unless otherwise noted. The two transitions of 819 and 1404 keV are proposed to depopulate the states corresponding to the coupling of the $g_{9/2}$ neutron to the 62 Fe 2⁺ and 4⁺ states above a 9/2⁺ level of unknown excitation energy; the 356 keV transition is interpreted to feed the ground state from a (3/2⁻) level of $p_{3/2}$ character (2007Lu13).

[#] Band(A): Band based on (9/2⁺) (2007Lu13).

$\gamma(^{63}\text{Fe})$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π
356.2 2	45 9	356.20	(3/2 ⁻)	0.0	5/2-
819.0 4	100 15	819.0+x	$(13/2^+)$	0+x	$(9/2^+)$
1404.1 5	39 7	2223.1+x	$(17/2^+)$	819.0+x	$(13/2^+)$

[†] From 2007Lu13.

 $^{63}_{26}{
m Fe}_{37}$

⁶³₂₆Fe₃₇