⁶³Zn ε decay 1974Kl02

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Huo Junde, Yang Dong, Huo Meirong,	ENSDF	28-Aug-2008

Parent: ⁶³Zn: E=0; $J^{\pi}=3/2^{-}$; $T_{1/2}=38.47$ min 5; $Q(\varepsilon)=3366.5$ 16; $\%\varepsilon+\%\beta^{+}$ decay=100.0

⁶³Cu Levels

E(level)	J^{π}	E(level)	\mathbf{J}^{π}	E(level)	J^{π}	E(level)	\mathbf{J}^{π}
0.0	3/2-	1861.16 22	7/2-	2497.2 4	(3/2-)	2806.4 4	3/2-
669.66 5	$1/2^{-}$	2011.2 3	$3/2^{-}$	2512.1 5	1/2,3/2,5/2	2857.8 4	$(1/2^{-},3/2^{-})$
962.09 4	$5/2^{-}$	2062.22 9	$(1/2)^{-}$	2535.82 7	$(5/2)^{-}$	2889.5 5	1/2-,3/2,5/2-
1327.06 7	$7/2^{-}$	2081.4 3	$5/2^{(-)}$	2696.57 13	$1/2^{-}, 3/2^{-}$	3044.7 8	$(5/2^{-})$
1412.05 4	5/2-	2092.67 14	7/2-	2716.76 10	3/2-,5/2-	3100.8 8	1/2-,3/2-
1547.04 6	$3/2^{-}$	2336.58 12	$5/2^{-}$	2780.43 24	$(1/2^-, 3/2^-)$		

ε, β^+ radiations

E(decay)	E(level)	$I\beta^+$ †	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger}$	Comments
(265.7 18)	3100.8		0.00057 17	7.0 1	0.00057 17	εK=0.8805; εL=0.1016; εM+=0.01786
(321.8 18)	3044.7		0.0049 9	6.2 1	0.0049 9	εK=0.88176; εL=0.1007; εM+=0.01767
(477.0 17)	2889.5		0.0112 17	6.2 1	0.0112 17	εK=0.8834; εL=0.09922; εM+=0.01738
(508.7 17)	2857.8		0.0074 15	6.5 1	0.0074 15	εK=0.8836; εL=0.09904; εM+=0.01735
(560.1 17)	2806.4		0.0057 12	6.7 1	0.0057 12	εK=0.8839; εL=0.09878; εM+=0.01729
(586.1 16)	2780.43		0.030 <i>3</i>	6.0 1	0.030 3	εK=0.8841; εL=0.09867; εM+=0.01727
(649.7 16)	2716.76		0.085 8	5.6 1	0.085 8	εK=0.8843; εL=0.09844; εM+=0.01723
(669.9 16)	2696.57		0.119 9	5.5 1	0.119 9	ε K=0.8844; ε L=0.09838; ε M+=0.01721
(830.7 16)	2535.82		0.255 18	5.34 <i>3</i>	0.255 18	εK=0.8849; εL=0.09798; εM+=0.01713
(854.4 17)	2512.1		0.0098 17	6.8 1	0.0098 17	εK=0.8849; εL=0.09793; εM+=0.01712
(869.3 17)	2497.2		0.026 3	6.4 1	0.026 3	εK=0.8850; εL=0.09790; εM+=0.01712
(1029.9 16)	2336.58		0.129 9	5.84 4	0.129 9	εK=0.8853; εL=0.09766; εM+=0.01707
(1285.1 16)	2081.4	0.00032 5	0.026 4	6.7 1	0.026 4	av Eβ=115.4 7; εK=0.8746; εL=0.09619; εM+=0.01681
(1304.3 16)	2062.22	0.0025 3	0.151 18	6.0 1	0.154 18	av Eβ=123.5 7; εK=0.8713; εL=0.09580; εM+=0.01674
(1355.3 16)	2011.2	0.00039 9	0.013 3	7.1 1	0.013 3	av Eβ=144.7 7; εK=0.8590; εL=0.09441; εM+=0.01650
(1819.5 16)	1547.04	0.040 5	0.059 8	6.7 1	0.099 10	av $E\beta$ =341.4 7; ε K=0.5238 15; ε L=0.05740 16; ε M+=0.01003 3
(1954.4 16)	1412.05	0.50 4	0.43 3	5.87 <i>3</i>	0.93 5	av Eβ=400.1 7; εK=0.4093 13; εL=0.04482 14; εM+=0.007828 24
(2404.4 16)	962.09	4.9 4	1.18 8	5.61 3	6.1 4	av Eβ=599.9 8; εK=0.1716 5; εL= 0.01876 6; εM+=0.003276 10
(2696.8 16)	669.66	7.0 3	0.92 4	5.82 2	7.9 3	av Eβ=732.5 8; εK=0.1029 3; εL=0.01124 3; εM+=0.001962 6
(3366.5 16)	0.0	80.3 7	3.74 5	5.40 1	84.0 7	av E β =1042.3 8; ε K=0.03948 8; ε L=0.004308 9

 † Absolute intensity per 100 decays.

$\gamma(^{63}\mathrm{Cu})$

Iv normalization: from I(670y)/I(β^+)=0.0883 35 (1969Bo15) and theoretical ε/β^+ ratio.

Ν

Eγ	I_{γ} ‡	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α #
244.3 5	0.065 10	2780.43	$(1/2^{-}, 3/2^{-})$	2535.82	$(5/2)^{-}$			
365.2 4	0.14 3	1327.06	7/2-	962.09	5/2-	D+Q	-0.060 5	0.00211
443.13 20	0.20 5	2535.82	$(5/2)^{-}$	2092.67	$7/2^{-}$			
449.93 5	2.88 20	1412.05	$5/2^{-}$	962.09	$5/2^{-}$	D+Q	+0.115 10	0.00130
475.8 9	0.07 4	2336.58	$5/2^{-}$	1861.16	$7/2^{-}$			
515.0 10	0.26 10	2062.22	$(1/2)^{-}$	1547.04	$3/2^{-}$			
533.8 6	0.06 2	2081.4	$5/2^{(-)}$	1547.04	$3/2^{-}$	D+Q	+0.23 +13-11	
584.82 15	0.40 5	1547.04	$3/2^{-}$	962.09	$5/2^{-}$	D(+Q)	+0.05 +14-15	
624.3 <i>3</i>	0.17 4	2716.76	3/2-,5/2-	2092.67	7/2-			
669.62 5	100	669.66	$1/2^{-}$	0.0	$3/2^{-}$	M1+E2	+0.104 6	0.00053
675.0 6	0.18 4	2535.82	$(5/2)^{-}$	1861.16	$7/2^{-}$			
685.6 6	0.05 2	2696.57	$1/2^{-}, 3/2^{-}$	2011.2	$3/2^{-}$			
742.25 10	0.82 10	1412.05	5/2-	669.66	$1/2^{-}$	E2		
754.8 8	0.08 3	2081.4	$5/2^{(-)}$	1327.06	$7/2^{-}$	D+Q	+0.4 + 5 - 4	
765.7 5	0.08 3	2092.67	7/2-	1327.06	$7/2^{-}$	D+Q	-0.18 50	
877.2 8	0.04 2	1547.04	$3/2^{-}$	669.66	$1/2^{-}$	D+Q	-0.6 +7-16	
899.0 4	0.15 3	1861.16	7/2-	962.09	5/2-	D+Q	+0.040 7	
924.3 5	0.120 24	2336.58	5/2-	1412.05	$5/2^{-}$			
962.06 4	79 <i>4</i>	962.09	5/2-	0.0	$3/2^{-}$	M1+E2	-0.49 3	
989.6 7	0.047 13	2535.82	$(5/2)^{-}$	1547.04	$3/2^{-}$			
1048.8 5	0.054 14	2011.2	3/2-	962.09	$5/2^{-}$	D+Q	+0.23 + 15 - 9	
1123.72 7	1.35 14	2535.82	$(5/2)^{-}$	1412.05	$5/2^{-}$			
1130.67 25	0.16 3	2092.67	7/2-	962.09	$5/2^{-}$	D+Q	-1.06 +23-22	
1149.50 <i>16</i>	0.23 3	2696.57	$1/2^{-}, 3/2^{-}$	1547.04	3/2-			
1169.6 <i>3</i>	0.094 20	2716.76	3/2-,5/2-	1547.04	$3/2^{-}$			
1208.8 <i>3</i>	0.15 3	2535.82	$(5/2)^{-}$	1327.06	$7/2^{-}$			
1233.7 5	0.03 1	2780.43	$(1/2^{-}, 3/2^{-})$	1547.04	3/2-			
1327.03 8	0.84 5	1327.06	7/2-	0.0	3/2-	E2		
1341.7 6	0.03 1	2011.2	3/2-	669.66	$1/2^{-}$	D+Q	-0.6 + 7 - 16	
1374.47 13	0.42 3	2336.58	5/2-	962.09	5/2-	D+Q		
1389.66 8	0.52 7	2716.76	3/2-,5/2-	1327.06	7/2-			
1392.55 8	1.18 18	2062.22	$(1/2)^{-}$	669.66	1/2-			
1412.08 5	9.1 4	1412.05	5/2-	0.0	3/2-			
1445.8 4	0.03 1	2857.8	$(1/2^-, 3/2^-)$	1412.05	5/2-			
1479.1 5	0.02 1	2806.4	3/2-	1327.06	$1/2^{-}$	M1 . D2	.0.20.7	
1547.04 6	1.49 0	1547.04	5/2	0.0	5/2 5/2	MI+E2	+0.39 /	
15/3./1 20	0.20 2	2030.82	(5/2)	962.09	5/2			
100/.2 0	0.01/ /	2336.38	5/2	669.66	1/2			
1090.0 10	0.024 12							

					⁶³ Zn ε decay	7 1974K	02 (continued)		
γ ⁽⁶³ Cu) (continued)									
Eγ	I_{γ}^{\ddagger}	E _i (level)	J_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	Comments		
1754.9 5	0.053 12	2716.76	$3/2^{-}, 5/2^{-}$	962.09 5/2-					
1827.0 5	0.051 13	2497.2	$(3/2^{-})$	669.66 1/2-	D+Q				
1861.3 <i>3</i>	0.170 24	1861.16	7/2-	$0.0 3/2^{-}$	E2				
1866.1 <i>3</i>	0.24 3	2535.82	$(5/2)^{-}$	669.66 1/2-					
1927.2 7	0.070 14	2889.5	1/2-,3/2,5/2-	962.09 5/2-					
2011.4 5	0.13 2	2011.2	3/2-	$0.0 3/2^{-}$	D+Q				
2026.8 <i>3</i>	0.68 7	2696.57	$1/2^{-}, 3/2^{-}$	669.66 1/2-					
2046.4 8	0.045 13	2716.76	3/2-,5/2-	669.66 1/2-					
2062.1 <i>3</i>	0.42 4	2062.22	$(1/2)^{-}$	0.0 3/2-					
2081.4 <i>3</i>	0.18 2	2081.4	$5/2^{(-)}$	$0.0 3/2^{-}$	D+Q				
2092.6 5	0.03 1	2092.67	7/2-	$0.0 3/2^{-}$	E2(+M3)	+0.10 22			
2110.8 5	0.075 15	2780.43	$(1/2^{-}, 3/2^{-})$	669.66 1/2-					
^x 2181.8 7	0.016 10								
2188.0 7	0.02 1	2857.8	$(1/2^{-}, 3/2^{-})$	669.66 1/2-					
2219.9 7	0.036 10	2889.5	1/2-,3/2,5/2-	669.66 1/2-					
2336.5 <i>3</i>	0.91 6	2336.58	$5/2^{-}$	$0.0 3/2^{-}$	D+Q				
2497.4 <i>4</i>	0.26 3	2497.2	$(3/2^{-})$	$0.0 3/2^{-}$			Mult., δ : d(+Q) with δ =-0.1 +5-6 or E2.		
2512.0 5	0.12 2	2512.1	1/2,3/2,5/2	$0.0 3/2^{-}$					
2536.0 <i>3</i>	0.81 8	2535.82	$(5/2)^{-}$	$0.0 3/2^{-}$	D+Q				
2696.6 3	0.49 5	2696.57	1/2-,3/2-	$0.0 3/2^{-}$					
2716.9 4	0.16 2	2716.76	3/2-,5/2-	$0.0 3/2^{-}$					
2780.3 4	0.19 2	2780.43	$(1/2^-, 3/2^-)$	$0.0 3/2^{-1}$					
2806.6 6	0.05 1	2806.4	3/2-	$0.0 3/2^{-}$					
2857.6 8	0.04 1	2857.8	$(1/2^{-}, 3/2^{-})$	$0.0 3/2^{-1}$					
2889.4 8	0.03 1	2889.5	$1/2^{-}, 3/2, 5/2^{-}$	$0.0 3/2^{-1}$					
3044.6 8	0.06 /	3044.7	$(5/2^{-})$	$0.0 3/2^{-1}$					
3100.7 8	0.007 2	3100.8	$1/2^{-}, 3/2^{-}$	$0.0 3/2^{-1}$					

[†] From adopted γ radiations.
[‡] For absolute intensity per 100 decays, multiply by 0.082 3.
[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

 $^{63}_{29}Cu_{34}$ -4

⁶³Zn ε decay 1974Kl02

⁶³Zn ε decay <u>1974Kl02</u>

⁶³Zn ε decay 1974Kl02

Decay Scheme (continued)

⁶³₂₉Cu₃₄