Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 196,17 (2024)	30-Sep-2023

 $Q(\beta^{-})=-3366.4$ 15; S(n)=10863.6 5; S(p)=6122.40 6; $Q(\alpha)=-5774.9$ 4 2021Wa16 S(2n)=19738.4 10, S(2p)=17259.6 7 (2021Wa16).

Other measurement: 1995Dr05: 45 Sc(18 O, γ) E=54-149 MeV 18 O beams from the tandem-injected superconducting linac at the University of

Washington Nuclear Physics Laboratory . Measured giant dipole resonance (GDR) energy spectra and angular distribution for decay of excited ⁶³Cu compound nucleus populated over a wide range of spin (J=0-47) and excitation energy (E=55-130 MeV) in the fusion of ${}^{18}\text{O}{+}^{45}\text{Sc.}$

⁶³Cu Levels

Cross	Reference	(XREE)	Flags
CIUSS	Reference	(AREF)	Flags

		$ \begin{array}{rrr} {\bf A} & {}^{63}{\rm Ni}\;{\beta}^{-} \\ {\bf B} & {}^{63}{\rm Zn}\;{\varepsilon}_{4} \\ {\bf C} & {}^{40}{\rm Ca}({}^{28} \\ {\bf D} & {}^{52}{\rm Cr}({}^{16} \\ {\bf E} & {}^{52}{\rm Cr}({}^{16} \\ {\bf F} & {}^{60}{\rm Ni}({\alpha},] \\ {\bf G} & {}^{60}{\rm Ni}({\alpha},] \\ {\bf G} & {}^{60}{\rm Ni}({\alpha},] \\ {\bf H} & {}^{60}{\rm Ni}({\alpha},] \\ {\bf H} & {}^{60}{\rm Ni}({\alpha},] \\ {\bf J} & {}^{62}{\rm Ni}({\rm p},] \end{array} $	decay β^+ decay Si,5py) $O,\alpha py$) O,AP2NG) p) py) F, ¹⁶ O) pny), ⁶² Ni(α ,p2n γ) y):E=res	$ \begin{array}{rrrr} {\tt K} & {}^{62}{\rm Ni}({\tt I} \\ {\tt L} & {}^{62}{\rm Ni}({\tt c} \\ {\tt M} & {}^{62}{\rm Ni}({\tt c} \\ {\tt N} & {}^{62}{\rm Ni}({\tt c} \\ {\tt O} & {}^{62}{\rm Ni}({\tt l} \\ {\tt P} & {}^{62}{\rm Ni}({\tt l} \\ {\tt Q} & {}^{62}{\rm Ni}({\tt l} \\ {\tt Q} & {}^{62}{\rm Ni}({\tt l} \\ {\tt R} & {}^{63}{\rm Cu}({\tt S} \\ {\tt S} & {}^{63}{\rm Cu}({\tt r} \\ {\tt T} & {}^{63}{\rm Cu}({\tt r} \\ {\tt T} & {}^{63}{\rm Cu}({\tt r} \\ {\tt S} & {}^{63}{\rm Cu}({\tt $	p,p),(p,p'),(p,n):res l,n) He,d) k,t) Li, ⁶ He) ² C, ¹¹ B) ⁶ O, ¹⁵ N) $\gamma,\gamma')$ e,e') $n,n'\gamma)$	U $^{63}Cu(p,p')$ V $^{63}Cu(p,p'\gamma)$ W $^{63}Cu(\alpha,\alpha')$ X $^{64}Zn(d,^{3}He\gamma)$ Y $^{64}Zn(pol d,^{3}He),(d,^{3}He)$ Z $^{64}Zn(t,\alpha)$ Others: AA $^{65}Cu(p,t)$ AB Coulomb excitation
E(level) [†]	Jπ‡	$T_{1/2}^{\#}$	XRI	EF		Comments
0.0	3/2-	stable	ABCDEFGHIJ LMN	NOPQR TUVWX	Z XREF: Others μ =+2.2259 4 Q=-0.210 15 J ^{π} : spin from laser spectro 0 ⁺ . μ : from 2019S measured by method with (2010Vi07), spectroscop Q: from 2021S by 1982Ef0 Other: -0.2 spectroscop δ <r<sup>2>(6⁵Cu, ⁶ (2020De21) δ<r<sup>2>(6⁵Cu, ⁶ (2016Bi08). Evaluated rms</r<sup></r<sup>	s: AA, AB (1978Lu08,2019StZV) (1982Ef01,2021StZZ) optical spectroscopy (1976Fu06) and collinear roscopy (2010Vi07); π =- from L(t, α)=1 from StZV evaluation based on +2.221535 <i>3</i> by 1978Lu08 using Nuclear Magnetic Resonance h ¹⁰⁹ Ag as reference. Other: +2.2236 <i>4</i> , using collinear and in-source laser bic technique. StZZ compilation based on 0.210 <i>15</i> measured 11 using Muonic X-ray hyperfine structure. 211 7 from 2010Vi07 using collinear laser by. See also 2021StZZ compilation. 6^{3} Cu)=-0.140 fm ² 7 (stat) <i>20</i> (syst)). 6^{3} Cu)=-0.148 fm ² <i>1</i> (stat) <i>17</i> (syst) s charge radius=3.8823 fs <i>15</i> (2013An02).
669.724 6	1/2-	0.200 ps 7	B FGHIJ LMN	NOPQRSTUVWX	Z XREF: Others B(E2) \uparrow =0.011 J ^{π} : L(pol d, ³ H T _{1/2} : weighted DSAM, 0.1 ^{\prime} fluorescence DSAM, 0.2	scharge radius=3.6625 is 15 (2013All02). s: AA, AB 16 6 He)=1 from 0 ⁺ ; L-1/2 from analyzing powers. If average of 0.215 ps 22 from (α ,p γ) by 196 ps 7 from (γ , γ') by nuclear resonance e, and 0.22 ps 2 from Coulomb excitation by 219 ps 48 from (d, ³ He γ) by DSAM.

⁶³Cu Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
962.145 8	5/2-	0.59 ps 4	BCDEFGHIJ MNOPQRSTUVWXY	 B(E2)↑: from Coulomb excitation. Other: 0.0098 34 from (e,e'). Z XREF: Others: AA, AB B(E2)↑=0.0355 17 J^π: L(pol d,³He)=3 from 0⁺; L-1/2 from analyzing powers.
1326.014.12	7/2-	0 59 ps ±6-5	BCDEECHT1 MNO PSTIWWYY	T _{1/2} : weighted average of 0.57 ps 7 from (α,pγ) by DSAM, 1.9 ps +6-3 from (α,pηγ) by DSAM, 0.57 ps 3 from (γ,γ') by nuclear resonance fluorescence, 0.52 ps +24-17 from (d, ³ Heγ) by DSAM, and 0.61 ps 4 from Coulomb excitation by DSAM. Other: 0.54 ps +7-6 from B(E2)↑=0.0355 16. B(E2)↑: from Coulomb excitation. Other: 0.0170 25 from (e,e'), which gives a δ(962γ)=-0.33 4 inconsistent with values from γ(θ) in (α,pγ) and Coulomb excitation.
1320.014 12	112	0.57 ps +0-5		$B(E2)\uparrow=0.0445 30$ $J^{\pi}: L(\text{pol } d,^{3}\text{He})=3 \text{ from } 0^{+}; L+1/2 \text{ from analyzing}$
				T _{1/2} : weighted average of 0.61 ps 6 from $(\alpha, p\gamma)$ by DSAM, 0.8 ps +3-2 from $(\alpha, pn\gamma)$ by DSAM, 0.53 ps +6-5 from (γ, γ') by nuclear resonance, 0.51 ps +14-10 from $(p, p'\gamma)$ by DSAM, 0.81 ps +20-18 from $(d, {}^{3}\text{He}\gamma)$ by DSAM, and 0.61 ps 6 from Coulomb excitation by DSAM. Other: 0.52 ps 4 from B(E2) \uparrow =0.0445 30 and adopted γ branching ratios
				$B(E2)\uparrow$: from Coulomb excitation. Other: 0.0073 17 from (e,e') is inconsistent with 0.039 4 calculated from adopted $T_{1/2}$.
1412.124 <i>13</i>	5/2-	1.48 ps 29	B DEFG IJ LMNOPQR TUVWXY	Z XREF: Others: AA, AB B(E2) \uparrow =0.013 4 XREF: L(1390). J ^{π} : L(d, ³ He)=L(t, α)=L(d,n)=L(³ He,d)=3 from 0 ⁺ ; 742 27 χ E2 to 1/2 ⁻
1547.109 <i>11</i>	3/2-	115 fs <i>12</i>	B FG J MN R TUVWXY	 T_{1/2}: weighted average of 2.0 ps 3 from (α,pγ) by DSAM, 1.15 ps +28-19 from measured width in (γ,γ'), 1.7 ps +59-11 from (d,³Heγ) by DSAM. Other: 0.26 ps +16-9 from B(E2)↑=0.013 4 in Coulomb excitation and adopted γ branching ratios is discrepant. Z XREF: Others: AA, AB J^π: L(pol d,³He)=L(t,α)=1 from 0⁺; 584.9γ D(+Q) to 5/2⁻.
				T _{1/2} : weighted average of 122 fs <i>12</i> from $(\alpha, p\gamma)$ by DSAM, 114 fs +16–13 from width in (γ, γ') , 97 fs +22–18 in $(p, p'\gamma)$ by DSAM, 300 fs +550–130 in $(d, {}^{3}\text{He}\gamma)$ by DSAM. Other: 20 fs +20–12 deduced from B(E2) \uparrow =0.0096 9 in Coulomb excitation and adopted γ branching ratios is in a disagreement.
1861.34 5	7/2-	0.64 ps +14-9	BCDEFG IJ R TUVWXY	Z XREF: Others: AA, AB B(E2) ⁺ =0.0115 <i>15</i> XREF: W(1820?).

⁶³Cu Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
1052.02.11				J ^{π} : L(pol d, ³ He)=3 from 0 ⁺ ; L+1/2 transfer from analyzing powers. T _{1/2} : weighted average of 1.14 ps 28 from (α ,p γ), 1.4 ps +14–10 from (α ,pn γ), 0.65 ps +16–11 from width in (γ , γ'), 0.53 ps +14–9 from (p,p' γ), and 0.66 ps +24–18 from (d, ³ He γ). Other: 0.24 ps +4–3 from B(E2) \uparrow =0.0115 15 in Coulomb excitation and adopted γ -ray branching ratios is in a disagreement.
2012.274 <i>19</i>	3/2-	33 fs +7-5	B FG J LMN qR TUVW Z	XREF: Others: AA , AB XREF: L(2020)q(2030)w(2030)Z(2019). J^{π} : L(t, α)=1 from 0 ⁺ ; 1048.8 γ M1+E2 to 5/2 ⁻ . T _{1/2} : weighted average of 35 fs 8 from (α , $p\gamma$) by DSAM, 32 fs +7-5 from (p , $p'\gamma$) by DSAM, and 44 fs +7-5 from width in (γ , γ').
2062.45 8	(3/2)-	0.22 ps 8	B FGH J MNO qR TUVw	XREF: Others: AA XREF: q(2030)w(2030). J^{π} : L(³ He,d)=1 from 0 ⁺ ; probable 342.5 γ from 7/2 ⁻ . But (1/2) ⁻ from (α ,p γ). T _{1/2} : weighted average of 0.15 ps 7 from (α ,p γ) and 0.30 ps +10-5 from (p,p' γ), both by DS AM
2081.32 5	5/2-	123 fs +26-20	B FGH J R TUV	XREF: Others: AA J^{π} : 534.0 γ M1+E2 to 3/2 ⁻ , 754.2 γ D(+Q) to $7/2^{-}$. T _{1/2} : weighted average of 115 fs +26–13 from (p,p' γ) by DSAM and 175 fs +65–37 from width in (γ , γ') and adopted γ -ray branching ratios
2092.48 5	7/2-	0.22 ps 6	BCDE GHIJ R TUV XYZ	XREF: Others: AA J^{π} : (pol d, ³ He)=3 from 0 ⁺ ; L+1/2 transfer from analyzing powers. $T_{1/2}$: weighted average of 0.24 ps 8 from (α ,p γ), 0.37 ps +11-6 from (p,p' γ), and 0.165 ps +52-45 from (d, ³ He γ). Other: 1.4 ps +14-7 from (α ,pn γ).
2207.84 8	9/2-	0.31 ps +10-5	CDE GHI TUV Z	XREF: Others: AA J^{π} : 1245.4 γ E2, ΔJ =2 to 5/2 ⁻ , 880.0 γ M1+E2 to 7/2 ⁻ . T ₁ γ ; from DSAM in (p, p' γ).
2274.7 4	(9/2 ⁻)		E	$J^{\pi/2}$ 948.2 γ D+Q to 7/2 ⁻ ; 1880.1 γ (Q) from
2336.48 7	5/2-	0.35 ps +12-7	B fG J MNO R TuV XY	13/2 ⁺ . XREF: Others: AA XREF: f(2336)O(2350)u(2337)Y(2340)AA(2340)
2338 10	3/2+,5/2+		f S Z	E(level): from $(n,n'\gamma)$. Other: 2336.55 <i>10</i> from (p,γ) :E=res. J^{π} : L(d, ³ He)=L(³ He,d)=3 from 0 ⁺ ; 2336.5 γ D(+Q) to 3/2 ⁻ . T _{1/2} : from DSAM in $(p,p'\gamma)$. Other: 1.3 ps +4-3 from width in (γ,γ') . XREF: f(2336)S(2300). J^{π} : from L(t, α)=2 from 0 ⁺ . E3 excitation from 3/2 ⁻ indicates 9/2 ⁺ for a level at 2300 <i>100</i> in (e,e').

⁶³Cu Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$		XREF	Comments
2404.77 7	7/2-	0.125 ps +37-21	G J	MN TUV XY	Z XREF: Others: AA E(level): from $(n,n'\gamma)$. Other: 2404.7 4 from (p,γ) :E=res. J^{π} : 2404.7 γ E2 to 3/2 ⁻ ; $L(d,^{3}He,d)=L(d,^{3}He)=3$ from 0 ⁺ . $T_{1/2}$: weighted average of 0.13 ps +10-5 from
					$(d,^{3}\text{He}\gamma)$ and 0.125 ps +37–21 from $(p,p'\gamma)$, by DSAM.
2430.37 7				Т	
2497.26 2	(3/2)	101 fs +23-18	B J	R TUV X	J^{π} : (3/2,5/2) from $\gamma(\theta)$ in (p,p' γ); 1827.7 γ D(+Q) to 1/2 ⁻ . T _{1/2} : from DSAM in (p,p' γ). Other: 109 fs
2503.50 8				Tu	+39-25 from which in (y, y) . XREF: u(2504). E(level): from $(n, n'x)$
2505.08 8	9/2+	1.5 ps +3-2	CDEFG IJ	MNOPQ Tu WXY	Z XREF: Others: AA XREF: u(2504)aa(2510). J^{π} : 9/2 ⁺ from $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in $(\alpha, \text{p}\gamma)$. $T_{1/2}$: from DSAM in $(\alpha, \text{pn}\gamma)$. Other: >67 fs
2511.903 18	(3/2)+	0.15 ps +5-3	В Ј	R TUV X	from (d, ³ He γ). XREF: Others: AA XREF: aa(2510). J ^{π} : L(p,p')=3 from 3/2 ⁻ ; 1840.0 γ to 1/2 ⁻ ; possible 1099.0 γ to 5/2 ⁻ .
2535.83 7	5/2-	0.33 ps +18-8	B J	R TUV	T _{1/2} : from DSAM in $(p,p'\gamma)$. z XREF: Others: AA XREF: $z(2546)aa(2540)$. E(level): from ⁶³ Zn $\varepsilon + \beta^+$ decay. Other: 2535.93 8 from (p,γ) :E=res.
2547.55 8	9/2-		ΕI	TU :	J ^{<i>i</i>} : allowed ε+β ⁺ decay from $3/2^-$ parent; Mult=E2 for 443.07γ to $7/2^-$ ruled out by RUL; T _{1/2} : from DSAM in (p,p'γ). Other: 0.109 ps +39-23 from width in (γ,γ'). Z XREF: Others: AA
					XREF: $z(2546)aa(2540)$. E(level): from $(n,n'\gamma)$. J^{π} : 9/2 from $\gamma(\theta)$ in $(\alpha,pn\gamma)$; L(p,t)=4 from $3/2^{-}$ for a level at 2540 <i>10</i> .
2617.03 <i>10</i> 2630.96 <i>10</i>	1/2-,3/2-		D	L T	E(level): from $(n,n'\gamma)$.
2672.51 <i>13</i>	5/2 ⁻ ,7/2 ⁻	66 fs +23-19	h	Tu Xy:	J ^{<i>i</i>} : L(d,n)=1 from 0 ⁺ . z XREF: Others: AA XREF: h(2660)u(2673)y(2674)z(2673)aa(2680). E(level): from (n,n' γ). J ^{<i>i</i>} : L(d, ³ He)=3 for a level 2674 5 and L(t, α)=3 for a level at 2673 <i>10</i> most likely correspond to this level, even though they may be probably multiplets also including
2677.17 12	11/2-	0.61 ps 15	DEFGhI	STu	other components. $T_{1/2}$: from DSAM in (d, ³ He γ). XREF: Others: AA XREF: h(2660)S(2730)u(2673)aa(2680). E(level): from (n,n' γ). J ^{π} : 1350.1 γ E2, Δ J=2 to 7/2 ⁻ , 469.0 γ

⁶³Cu Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #			2	XREF				Comments	
										M1(+E2) to 9/2 ⁻ . E4 excitation from 3/2 ⁻ for a level at 2730 50 in (e,e') is consistent, which could indicate it is the same level here while there is no other level around with J^{π} consistent with L(e,e')=4 from 3/2 ⁻ . T _{1/2} : weighted average of 0.58 ps 15 from (α ,p γ) and 0.8 ps +6-2 from (α ,pn γ), by DSAM.	
2678.07 12	(5/2 ⁻ ,7/2 ⁻)				J		Tu]	yz	XREF: Others: AA XREF: u(2673)y(2674)z(2673)aa(2680). E(level): from $(n,n'\gamma)$. J ^{π} : 1131.0 γ to 3/2 ⁻ , 1716.8 γ to 5/2 ⁻ ; L(p,t)=4 from 3/2 ⁻ for a level at 2680 <i>10</i> , which may be a multipet including this level.	
2682.45 9	(1/2 ⁻ ,3/2 ⁻)				J	m	Tu			XREF: m(2686)u(2673). J ^{π} : L(³ He,d)=1 for a level at 2686 20, possibly a doublet including this 2682 level.	
2696.69 2	1/2-,3/2-,5/2-	0.18 ps +10-5	В		J	m	R TUV			XREF: m(2686). J^{π} : allowed $\varepsilon + \beta^+$ feeding from $3/2^-$ parent. $T_{1/2}$: from DSAM in (p,p' γ).	
2717.04 8	3/2 ⁻ ,5/2 ⁻	>0.2 ps	В		J		TUV			E(level): from $(n,n'\gamma)$. Other: 2716.9 4 from (n,γ) :E=res. J ^{π} : allowed $\varepsilon + \beta^+$ feeding from 3/2 ⁻ parent; 624.4 γ to 7/2 ⁻ . Therefore The term DSAM in $(n, n'\gamma)$.	
2764.56 9				f		m	TU		Z	XREF: f(2773)m(2780)Z(2750).	
2775.84 11	(3/2 ⁻)			f		m	Tu		z	E(level): from $(n, n' \gamma)$. XREF: Others: AA XREF: f(2773)m(2780)u(2778)z(2775)aa(2790).	
2780.36 7	(3/2-)	46 fs +17-11	В	f	J	m	R TuV		Z	Clevel): from $(n,n'\gamma)$. J ^π : from DWBA analysis of $\sigma(\theta)$ in (α,p) for a level at 2773. XREF: Others: AA XREF: f(2773)m(2780)u(2778)z(2775)aa(2790). J ^π : L(³ He,d)=1 for a level at 2780; Mult=E2 for 244 av to 5/2 ruled out by PLU	
2808.14 8	3/2-	>0.19 ps	В		J	L	TUV		Y	To 244.57 to 5/2 ruled out by KOL. $T_{1/2}$: from DSAM in $(p,p'\gamma)$. XREF: Others: AA XREF: Y(2798)aa(2820). E(level): from $(n,n'\gamma)$. Other: 2806.6 5 from (p,γ) :E=res. J ^{π} : L(d,n)=1 from 0 ⁺ for a level at 2810; 1481.0 γ to 7/2 ⁻ .	
2818.87 20 2832.95 19	(7/2 ⁻)	200 fs +68-56			J		T Su	X	yz	$T_{1/2}: from DSAM in (p,p'γ).$ E(level): from (n,n'γ). XREF: Others: AA XREF: S(2800)u(2831)y(2835)z(2836)aa(2820). E(level): from (d, ³ Heγ). Other: 2831.3 from (p,γ):E=res. J ^π : L(d, ³ He)=3 from 0 ⁺ for a level at 2835 5 and L(t,α)=3 for a level at 2836 <i>15</i> , which could be a doublet of 2833+2836. E2	

⁶³₂₉Cu₃₄-6

Adopted Levels, Gammas (continued)

⁶³Cu Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #		χ	KREI	F		Comments
2835.83 11	(5/2-)					Tu	yz	excitation from $3/2^-$ in (e,e') for a level at 2800 100 very likely correspond to this level. XREF: Others: AA XREF: u(2831)y(2835)z(2836)aa(2850). E(level): from (n,n' γ). J ^{π} : 976.0 γ to 7/2 ⁻ , 2166.0 γ to 1/2 ⁻ ; L(d, ³ He)=3 from 0 ⁺ for a level at 2835 5 and L(t α)=3 for a level at 2836 /5 level both
2847 5	1/2 ⁻ ,3/2 ⁻						Y	probably doublet of $2833+2835$. E(level): this level may be the same level as the 2858 level, but the evaluator lists it here as a separate level considering a large energy difference.
2857.55 7	(1/2 ⁻ ,3/2 ⁻)	0.4 ps +15-2	В	J	M	R TUV	Χz	J [*] : L(d, $He) = 1$ from 0 ⁺ . XREF: M(2860)z(2864). E(level): from (n,n' γ). Other: 2857.27 <i>12</i> from (p, γ):E=res. W. L(2He) d)=1 for a level at 2860
2869 8					m	U	z	XREF: Others: AA
2889.29 4	(1/2 ⁻ ,3/2,5/2 ⁻)		В	J		TUV		XREF: m(2860)z(2864)aa(2880). XREF: Others: AA XREF: aa(2880).
2911.04 12			D					$J^{-1}: 2219.1\gamma$ to $1/2$, 1926. γ to $5/2$.
2958.90 11				J		TU		E(level): from $(n,n'\gamma)$. Other: 2956.2 8 from (p,γ) :E=res.
2976.94 6	1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻			J		R TU		XREF: Others: AA XREF: AA(2990). J^{π} : 2308.0 γ to 1/2; L(p,t)=2 for a level at 2990
3032.17 9	3/2-				Μ	TU	Y	20. XREF: Others: AA XREF: M(3040)Y(3037)AA(3040). E(level): from $(n,n'\gamma)$. J ^{π} : L(d, ³ He)=L(³ He,d)=1 from 0 ⁺ ; 1706.6 γ to 7/2 ⁻ can't be M3, since it would require an isomeric T _{1/2} >0.24 μ s based on D(4)(24)(24)(24)(25)(24)(24)(25)(24)(24)(24)(24)(24)(24)(24)(24)(24)(24
3044.52 9	(5/2)-		В	J		R TU	Z	B(M3)(W.u.)=10 from RUL. $J^{\pi}: L(t,\alpha)=3$ from 0 ⁺ , L(p,t)=2 from 3/2 ⁻ ;
3095.21 9	(1/2,3/2,5/2 ⁻)					q Tu	Z	2372.69 to 1/2 Tavors 5/2 . XREF: Others: AA XREF: q(3100)u(3099)Z(3078)aa(3110). E(level): from $(n,n'\gamma)$.
3100.54 4	1/2-,3/2-		В	J	M	R Tu	Z	XREF: Others: AA XREF: M(3106)u(3099)Z(3117)aa(3110).
3128.1 11	-			J		q TU	Z	J^{π} : L(³ He,d)=1 from 0 ⁺ . XREF: Others: AA XREF: q(3100)Z(3143)AA(3140). J^{π} : L(nt)=2 from $3/2^{-}$ for a level at 3140, 20:
3183 8	-					U		XREF: Others: AA XREF: AA(3190).
3208 8 3210 <i>20</i>	3/2 ⁺ ,5/2 ⁺ 9/2 ⁻		F			U	Z	J ^{π} : L(t, α)=2 from 0 ⁺ for a level at 3209 <i>15</i> . XREF: Others: AA XREF: AA(3210).

⁶³Cu Levels (continued)

E(level) [†]	J#‡	T _{1/2} #		Х	KRE	F			Comments
3225.3 6	5/2-			J	MN	TU		ΥZ	 J^π: 9/2 from DWBA analysis of σ(θ) in (α,p) for a level at 3210; L(p,t)=4 from 3/2⁻ for a level at 3210 20. XREF: Others: AA XREF: M(3220)Z(3229)AA(3230). J^π: L(³He.d)=3 from 0⁺: L(p,t)=4 from 3/2⁻ for
3248 <i>3</i>	(5/2)		F			TU			a level at 3230 20; 2855.5 γ to 1/2 ⁻ . XREF: F(3254). E(level): from (n,n' γ).
3263.7 5	(5/2 ⁻)			J					J ^{π} : from DWBA analysis of $\sigma(\theta)$ in (α ,p). XREF: Others: AA XREF: AA(3260). J ^{π} : L(p,t)=4 from 3/2 ⁻ for a level at 3260 20;
3280 3292.4 <i>6</i>	5/2 ⁻ ,7/2 ⁻ (3/2 ⁺ ,5/2 ⁺)			J	M	PQ Tu			$^{2593.8\gamma}$ to $1/2^{-}$. J^{π} : from L(^{16}O , ^{15}N)=L(^{12}C , ^{11}B)=3. XREF: M(3295)T(3090.8?)u(3294). J^{π} : L(3 He,d)=2 from 0 ⁺ for a level at 3295,
3295.00 9	$(11/2^+)$		D						which could be a doublet of $3292+3298$. J ^{π} : proposed in (¹⁶ O, $\alpha p\gamma$) based on γ -decay
3297.62 10	3/2-	16 fs +16–9		J		u		ХҮ	pattern and theoretical prediction. XREF: u(3294).
									J^{π} : L(pol d, ³ He)=1 from 0 ⁺ for a level at 3296 5, with L+1/2 transfer from analyzing powers (1991Se09)
3307.03 7	(3/2+)		f	J		sTu	W	ΪZ	XREF: Others: AA XREF: $f(3308)s(3300)T(3313.2)u(3311)w(3320)z$ (3303)aa(3310). J ^{π} : L(t, α)=3 from 0 ⁺ and L(p,p')=L(α , α')=L(p,t)=3 from 3/2 ⁻ give 3/2 ⁺ ,5/2 ⁺ , which is likely for a doublet of 3307+3310; 2627.25 γ to 1/2 ⁻ level. Other: E3 excitation from 3/2 ⁻ in (e,e') gives 9/2 ⁺ for a level at 3300, 100
3309.6 5	(3/2+,5/2+)		f	J		s u	W	z	XREF: Others: AA XREF: f(3308)s(3300)u(3311)w(3320)z(3303)aa(3 310).
3370 8						U			J^{π} : see J^{π} comments for 3307 level. XREF: Others: AA
3389 15								Z	XREF: aa(3380). XREF: Others: AA XREF: aa(3380).
3404.41 9	$(1/2 \text{ to } 7/2)^{\textcircled{0}}$			J		R U			
3418.16 4	$(1/2 \text{ to } 7/2)^{\textcircled{a}}$			J		TU			
3426.0 21	1/2-,3/2-				M	Tu			XREF: u(3431). J^{π} : L(³ He d)=1 from 0 ⁺ for a level at 3424
3429.80 8	(3/2)-		F	J		R Tu		Y	XREF: Others: AA XREF: F(3434)u(3431)Y(3434)AA(3440). J ^{π} : L(d, ³ He)=1 from 0 ⁺ for a level at 3434 5; (3/2) from DWBA analysis of $\sigma(\theta)$ for a level at 3434 in (α ,p).
3461.17 18	11/2+	0.2 ps +4-1	CDE G I	[J ^{π} : from $\gamma(\theta)$ and $\gamma($ lin pol) in (α ,p γ). T _{1/2} : from DSAM in (α ,pn γ). Other: ≤ 0.42 ps from DSAM in (α ,p γ).
3461.3 8	5/2+			J		R TU	W	Z	XREF: U(3458)W(3430)Z(3460). J ^{π} : L(t, α)=L(³ He,d)=2 from 0 ⁺ ; 956 γ to to 9/2 ⁺ .

⁶³Cu Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$			XRE	EF			Comments
3465.00 11	1/2-,3/2-	0.07 ps +15-4		J	L			ХҮ	XREF: L(3470).
3474.59 12	5/2+		F	J	M		TU	Z	J^{π} : L(d,n)=L(d, ³ He)=1 from 0 ⁺ . XREF: Others: AA XREF: AA(3470).
3500	3/2+,5/2+					PQ		W	J [*] : L ^{(*} He,d)=2 from 0 [*] ; 5/2 from DWBA analysis of $\sigma(\theta)$ in (α,p) . XREF: W(3510). J ^{π} : from L(¹⁶ O, ¹⁵ N)=L(¹² C, ¹¹ B)=2.
3541.3 2 3556.8 5	$(1/2^{-} \text{ to } 7/2)^{@}$ $(11/2^{-})$		E	J					J^{π} : and 2579.1 γ to 5/2 ⁻ . J^{π} : 1008.9 γ to 9/2 ⁻ ; 11/2 ⁻ proposed in (¹⁸ O, α p2n γ) based on γ decay pattern, but now experimental evidence is
3565 6 15							т		available.
3569.47 <i>10</i> 3580.71 <i>12</i>	1/2-,3/2-	5 fs +8-4] J	M		•	XY	XREF: Others: AA
									J^{π} : L(³ He,d)=L(d, ³ He)=1 from 0 ⁺ .
3583.3 6	(5/2 ⁻ ,7/2 ⁻)	0.10 ps +13-5						XYZ	J^{π} : L(d, ³ He)=(3) from 0 ⁺ . But L(t, α)=2 from 0 ⁺ for a level at 3583 <i>15</i> is in disagreement
3607 <i>3</i>	5/2-,7/2-						ST	YZ	XREF: S(3600)Y(3600)Z(3617).
									J^{π} : from L(d, ³ He)=3 from 0 ⁺ for a level at 3600 20. E2 excitation from $3/2^{-}$ in (e,e') for a level at 3600 100 is consistent, which could be the same level here.
3647.51 7 3656.8 8	$(1/2,3/2,5/2^-)$ $(1/2,3/2,5/2^-)$			J J			т		J^{π} : 2977.7 γ to 1/2 ⁻ . J^{π} : strong primary 4908 γ from 1/2 ⁻
3681.0 7	5/2-,7/2-	63 fs +29-23						ХҮ	resonance in (p,γ) :E=res. XREF: Others: AA XREF: Y(3678).
3683 15	3/2+,5/2+							Z	J^{π} : L(d, ³ He)=3 from 0 ⁺ . J^{π} : L(t, α)=2 from 0 ⁺ .
3708	$1/2^{-},3/2^{-}$		c		M				J^{π} : L(³ He,d)=1 from 0 ⁺ .
5/19.04 0	(1/2,5/2)		I	J			U		XREF: 000113: AA XREF: f(3713)AA(3720).
									J^{π} : from L(p,p')=L(p,t)=3 from 3/2 ⁻ ; 3049.24 γ to 1/2 ⁻ . But (5/2) from analysis
									of $\sigma(\theta)$ in (α, p) for a level at 3712 is in a disagreement, which may indicate a
3730 20	5/2-,7/2-		f					Y	different level in (α, p) . XREF: f(3713).
2727.2.5	(12/2-)		F						J^{π} : L(d, ³ He)=3 from 0 ⁺ .
3740.19 13	$(15/2)^+$ $(3/2,5/2)^+$		E	J				W	$J^{**} = 1529.7\gamma Q, \Delta J = 2 to 9/2 .$ XREF: W(3740).
									J ^π : from L(α , α')=3 from 3/2 ⁻ ; 2193.04γ to 3/2 ⁻ .
3774.43 9	(1/2,3/2,5/2 ⁻)			J					This level from (p,γ) :E=res is considered by the evaluator as a different level from 3775.2 4 in $(d,^{3}He\gamma)$ because they have no overlapping de-exciting γ transitions.
3775.2.4	5/27/2-	116 fs +44-33						хү	J^{n} : 1/12.22 γ to (1/2) ⁻ . See comments for 3774.43 level.
	-,- ,,,-								J^{π} : L(d, ³ He)=3 from 0 ⁺ .

⁶³Cu Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #			XR	EF				Comments
3779 15	3/2+,5/2+								Z	XREF: Others: AA XREF: $aa(3790)$. I^{α} : $L(t, \alpha)=2$ from 0^+ .
3785.53 <i>4</i> 3810 <i>20</i>	1/2 ⁻ ,3/2 ⁻			J	M		U		Z	J^{π} : L(³ He,d)=1 from 0 ⁺ . XREF: Z(3818). E(level): from (p,p'). Other: 3818 <i>15</i> from (t, α).
3840 20	(9/2+)		F				SU	W		J ^{π} : from L(p,p')=3 from 3/2 ⁻ . XREF: Others: AA XREF: F(3839)S(3800)W(3830). E(level): from (p,p') and (p,t). J ^{π} : from L(p,p')=L(p,t)=3 from 3/2 ⁻ ; (9/2 ⁺) from analysis of $\sigma(\theta)$ in (α ,p); E3 excitation from 3/2 ⁻ in (e,e') gives 9/2 ⁺ for a level at 3800 <i>100</i> , which could indicate it is the same level here.
3866.55 10	$(1/2^{-} \text{ to } 7/2)^{\textcircled{0}}$			J			S			XREF: s(3860).
3885.68 11	(5/2+)		F	J	M		u			J [*] : and 2904.35 γ to 5/2 . XREF: F(3888)M(3881)u(3890). J [#] : L(³ He,d)=(2) from 0 ⁺ ; (5/2 ⁺) from analysis of $\sigma(\theta)$ in (α ,p).
3888.8 6	5/2 ⁻ ,7/2 ⁻	119 fs +79–48					sT	Х	Y	XREF: s(3860). E(level): from (d, ³ He γ). Other: 3889.7 21 from (n,n' γ). $I^{\alpha} \cdot I$ (d ³ He)=3 from 0 ⁺
3895.1 9	5/2 ⁻ ,7/2 ⁻	28 fs +11-8					sT	х	Y	$\begin{aligned} & XREF: s(3860)Y(3890). \\ E(level): from (d, {}^{3}He\gamma). Other: 3892 3 from (n,n'\gamma). \\ & J^{\pi}: L(d, {}^{3}He)=3 from 0^{+}. \end{aligned}$
3897.45 8	(3/2 ⁺ ,5/2 ⁺) [@]			J			u		z	XREF: Others: AA XREF: u(3890)z(3895)aa(3900). J^{π} : L(p,p')=3 from 3/2 ⁻ for a level at 3890 20; L(p,t)=3 from 3/2 ⁻ for a level at 3900 20; L(t, α)=2 from 0 ⁺ for a level at 3895 15.
3902.1 10	(3/2+,5/2+)			J			u		z	XREF: Others: AA XREF: u(3890)z(3895)aa(3900). J^{π} : L(p,p')=3 from 3/2 ⁻ for a level at 3890 20; L(p,t)=3 from 3/2 ⁻ for a level at 3900 20; L(t, α)=2 from 0 ⁺ for a level at 3895 15.
3920 <i>15</i> 3932.3 <i>6</i>	(13/2 ⁻)		E						Z	J ^{π} : 1255.4 γ to 11/2 ⁻ ; 13/2 ⁻ proposed in (¹⁸ O, α p2n γ) based on γ decay pattern, but no experimental evidence is available.
3947					M					
3970	7/2+,9/2+		F	J	M	PQ	!			XREF: F(3964)M(3980)P(3970)Q(3960). J^{π} : L(³ He,d)=L(¹² C, ¹¹ B)=L(¹⁶ O, ¹⁵ N)=4 from 0 ⁺
3978.47 <i>11</i> 4017.08 <i>11</i>	(1/2,3/2,5/2 ⁻) 1/2 ⁻ ,3/2 ⁻] J	1M				Y	J^{π} : 1916.25γ to (1/2) ⁻ . XREF: 1(4030)M(4008)Y(4023). I^{π} . I (d ³ H ₂)=1 from 0 ⁺
4039.1 17	(3/2-)				1M		RΤ		z	XREF: 1(4030)z(4043).

⁶³Cu Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #		2	KREF			Comments
								E(level): from $(n,n'\gamma)$. J^{π} : L(d,n)=1 from 0 ⁺ for a level at 4030; probable α to $7/2^{-}$
4054.84 11	1/2-,3/2-		F	J	M		z	XREF: M(4060)z(4043).
4110.5 7	1/2+	16 fs +5-4				Т	ХҮ	J^{π} : L(³ He,d)=1 from 0 ⁺ for a level at 4060. XREF: Y(4111). E(level): from (d, ³ He γ).
4113.20 16	$(1/2^+)$			J		t	z	J^{π} : L(d, ³ He)=0 from 0 ⁺ . XREF: t(4117)z(4117).
4119.1 10	(1/2 ⁺)			J		Rt	z	J^{n} : L(t, α)=0 for a level at 4117 15. XREF: t(4117)z(4117). I^{π} : L(t, α)=0 for a level at 4117 15.
4124.61 <i>14</i> 4129.10 <i>13</i>	(1/2 to 7/2 ⁻) [@] 13/2 ⁺	2.3 ps +14-7	DE	J I		Т		J ^{π} : and 2113.3 γ to 3/2 ⁻ . E(level): from (¹⁶ O, α p γ). J ^{π} : 1623.9 γ E2, Δ J=2 to 9/2 ⁺ ; 668.1 γ D, Δ I=1 to 11/2 ⁺
4132.78 14	$(1/2^{-} \text{ to } 7/2^{-})^{@}$		F	J			Y	T _{1/2} : from DSAM in $(\alpha, pn\gamma)$. XREF: F(4135)Y(4133). J ^{π} : γ s to $3/2^{-}$ and $5/2^{-}$ disfavor $7/2^{+}$ and $1/2^{+}$, respectively. Other: (9/2) from (α, p) for a level at 4135 is in disagreement, which might indicate a different level
4145.1 7	$(1/2^{-} \text{ to } 7/2^{-})^{@}$		f	J		Т		Solution XREF: f(4135). J^{π} : γ s to $3/2^{-}$ and $5/2^{-}$ disfavor $7/2^{+}$ and
4148.18 <i>14</i> 4155.56 <i>12</i>	(1/2,3/2,5/2 ⁻) 13/2 ⁺	3.5 ps 14	CDE G	J I				$I/2^+$, respectively. J^{π} : 3478.35γ to $1/2^-$. J^{π} : 1649.8γ E2, ΔJ =2 to $9/2^+$;694.1γ M1+E2 to $11/2^+$ (α,pnγ). T _{1/2} : from DSAM in (α,pnγ). Other: <0.56 from (α pγ)
4183.5 <i>24</i> 4189 <i>4</i>						sT sT		XREF: s(4200). XREF: s(4200).
4225.59 14	5/2-,7/2-	20 fs +9-7		J		S	XYZ	XREF: $s(4200)Y(4222)Z(4230)$.
4285.03 10	5/2-,7/2-	31 fs +8-6		J		Т	XY	J : L(d, He)=L(t, α)=3 from 0 ⁺ . XREF: Y(4286).
4289.49 10	1/2-,3/2-			J		R	Z	XREF: R(4294)Z(4292).
4354.75 15	(1/2 ⁻ ,3/2 ⁻)			J			у	$J^{*:}$ L(t, α)=1 from 0 ⁺ for a level at 4292 15. XREF: y(4356). J^{π} : L(d, ³ He)=1 from 0 ⁺ for a level at 4356
4358.43 14	(1/2 ⁻ ,3/2 ⁻)			J		R	у	5. XREF: y(4356). J^{π} : L(d, ³ He)=1 from 0 ⁺ for a level at 4356
4362.0 <i>24</i> 4375 <i>5</i>	(1/2,3/2,5/2 ⁻) 5/2 ⁻ ,7/2 ⁻					Т	YZ	J ^{π} : 3692 γ to 1/2 ⁻ . XREF: Z(4371).
4382.11 <i>14</i> 4403.97 <i>10</i> 4413.8 <i>14</i>	$(1/2 \text{ to } 7/2)^{\textcircled{0}}$ $(1/2^-, 3/2, 5/2^-)$			J J		T T		E(level): from (p,γ) E=res. J ^{π} : 3733.13 γ to 1/2 ⁻ , 3440.72 γ to 5/2 ⁻ .
4419.70 <i>10</i> 4432.85 28	$(1/2 \text{ to } 7/2^{-})^{@}$ $1/2^{+}$	16 fs +9–6		J		Т	XYZ	J^{π} : and 2408.38 γ to 3/2 ⁻ . XREF: Y(4436)Z(4440). E(level): from (d, ³ He γ).

⁶³Cu Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF						Comments
4457.02 9	(1/2,3/2,5/2 ⁻)				J				J ^π : L(d, ³ He)=L(t, α)=0 from 0 ⁺ . J ^π : 3787.17γ to 1/2 ⁻ .
4470.78 9	$(1/2 \text{ to } 7/2)^{\textcircled{a}}$				J			W	XREF: W(4470).
4497.65 16	17/2+	4.1 ns <i>I</i>	CDE	G	I				 μ=+1.56 10 (1983Ka24,2020StZV) μ: from 1983Ka24 using IPAD. See also 2020StZV evaluation. J^π: spin=17/2,13/2 from γ(θ) in (α,pγ); 342γ E2, ΔJ=2 to 13/2⁺.
4498.45 12	5/2-	8 fs 2			J		Т	XYz	T _{1/2} : from $342\gamma(t)$ in $(\alpha, pn\gamma)$. XREF: Y(4503)z(4510). J ^{π} : L(d, ³ He)=3 from 0 ⁺ ; 3838.6 γ to 1/2 ⁻
4501.43 10	$(1/2 \text{ to } 7/2)^{@}$				J			z	XREF: z(4510).
4505 52 9	$(1/2 \text{ to } 7/2)^{\textcircled{0}}$				1			- 7	XRFF: z(4510)
4511.6 24	(1/2 + 0 + 7/2) $(5/2^-, 7/2^-)$						RΤ	Z	XREF: R(4513)z(4510). J^{π} : L(t, α)=3 from 0 ⁺ for a level at 4510 <i>15</i> .
4517.15 13	$(1/2,3/2,5/2^{-})$				J				J^{π} : 3847.3 γ to 1/2 ⁻ .
4531.39 9 4533 <i>4</i>	$(1/2 \text{ to } 7/2)^{\textcircled{0}}$				J		т		
4576.70 17	15/2+	2.4 ps +14-10	DE		I				J ^{π} : 447.1 γ M1+E2 to 13/2 ⁺ ; spin from $\gamma(\theta)$ in (α ,pn γ) and excitation function. T ₁ /2; from DSAM in (α ,pn γ).
4581 <i>15</i>	(5/2 ⁻ ,7/2 ⁻)							YZ	XREF: Y(4580)Z(4581). J ^{π} : L(d, ³ He)=3 from 0 ⁺ for a level at 4580 40.
4592.89 <i>13</i> 4598 <i>4</i>	$(1/2 \text{ to } 7/2)^{@}$				J	m m	Т		XREF: m(4594). XREF: m(4594).
4613.4 5	$(15/2^{-})$		E						J ^π : 1936.6γ (Q), Δ J=(2) to 11/2 ⁻ .
4640.0 5	$(1/2 \text{ to } 7/2)^{\textcircled{a}}$				J	m	Т		XREF: m(4635).
4643.75 12	$(1/2 \text{ to } 7/2)^{\textcircled{a}}$				J			z	XREF: z(4650).
4646.70 <i>14</i> 4666 4678	$(1/2 \text{ to } 7/2)^{@}$			f F	J	m		Z	XREF: f(4666)m(4635)z(4650).
4078	$(1/2 + 7/2)^{(0)}$					m			VDEE = (4(79))
4091.80 12 4735 5	$(1/2 to 7/2)^{-1}$				J	m M		Y	XREF: M(4078). XREF: M(4734).
									J^{π} : L(d, ³ He)=0 from 0 ⁺ .
4752.66 <i>12</i> 4782					J	м			
4789.14 10	$(1/2 \text{ to } 7/2)^{@}$				J				
4795.77 10	$(1/2^+)$				J			У	XREF: y(4799).
4806.23 10	$(1/2^+)$	7 fs 5			J		Т	Ху	J^{π} : from L(d, ³ He)=0 for a level at 4799 5. XREF: y(4799).
4810.20 16	$(1/2 \text{ to } 7/2)^{@}$				J				J . Itolii $L(u, He) = 0$ for a level at 4799 3.
4838.50 15	-				J	M			XREF: M(4844).
4869.85 14	$(1/2 \text{ to } 7/2)^{\textcircled{0}}$				J	m	Т		XREF: m(4871).
4876.65 25	$(1/2 \text{ to } 7/2)^{\textcircled{@}}$				J	m			XREF: m(4871).
4890	7/2+,9/2+					м	Q		J^{π} : L(¹⁶ O, ¹⁵ N)=4 from 0 ⁺ .
4919.0 6	(13/2 ⁺ to 19/2 ⁺)		C	G		M			XREF: M(4904). J^{π} : 13/2,15/2 ⁺ ,19/2 ⁺ proposed in (α ,p γ)

⁶³Cu Levels (continued)

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	$T_{1/2}^{\#}$			XREF	1		Comments
4955.40 10	5/2-,7/2-			J			Y	based on $\gamma(\theta)$ and $\gamma(\ln \text{ pol})$ while no evidence is available; 421.4 γ to 17/2 ⁺ . J ^{π} : L(d, ³ He)=3 from 0 ⁺ .
5007.11 16	$(19/2^+)$		D					J^{π} : 510.0 γ to 17/2 ⁺ ; (19/2 ⁺) proposed in (¹⁶ O, α p γ).
5016.45 11	$(1/2 \text{ to } 7/2)^{\textcircled{a}}$			J				
5053.0 2	$(1/2 \text{ to } 7/2)^{@}$			J				
5073.47 9	$(1/2 \text{ to } 7/2)^{\textcircled{a}}$			J				
5101.18 10	$(1/2 \text{ to } 7/2)^{\textcircled{a}}$			J				
5139.6 2	$(1/2 \text{ to } 7/2)^{\textcircled{a}}$			J	М	Т		
5161.19 <i>13</i> 5191 <i>5</i>	(1/2 to 7/2) ⁻			J	m		Y Y	J^{π} : L(d, ³ He)=3,1 from 0 ⁺ . XREF: m(5216).
5225.5 <i>3</i> 5253 <i>4</i>	$(1/2 \text{ to } 7/2)^{@}$			J	m	т		XREF: m(5216).
5273.75 11	$(1/2 \text{ to } 7/2)^{\textcircled{a}}$			J				
5292 4					m	Т		XREF: m(5302).
5304.3 24	(3/2 ⁻ ,5/2,7/2 ⁻)				m	Т		XREF: m(5302). J^{π} : 3977 γ to 7/2 ⁻ , 5304 γ to 3/2 ⁻ .
5311.95 13	$(1/2 \text{ to } 7/2)^{\textcircled{6}}$			J				
5318.12 <i>1</i> 6 5335.3 <i>3</i>	$(1/2^+)$		CD	J	M		Y	E(level): from ($^{13}\text{O},\alpha p\gamma$). XREF: M(5330).
5358.6 4	$(19/2)^+$	0.8 ps +3-1	E	I				J ^π : 860.6γ M1+E2, Δ J=1 to 17/2 ⁺ . T _{1/2} : from DSAM in (α pnγ)
5366.07 <i>14</i> 5401.8 <i>21</i>	$(1/2 \text{ to } 7/2)^{\textcircled{@}}$			J	M M	T T		XREF: M(5358)T(5362). XREF: M(5397).
5413.1 2	(17/2 ⁺)	>2 ps	E	I				E(level): from $(\alpha, pn\gamma)$. J^{π} : 836.1 γ (M1+E2) to 15/2 ⁺ . $T_{1,\alpha}$: from DSAM in $(\alpha, pn\gamma)$
5420 5							Y	1 _{1/2} . nom Dorini in (a,phy).
5446					Μ			
5489					Μ			
5533					M			VDEE : a(5500)
5566 <i>4</i>				J	M	s sT		XREF: $S(3500)$. XREF: $M(5568)s(5500)$. E(level): from $(n,n'\gamma)$.
5571.36 10	$(1/2 \text{ to } 7/2)^{\textcircled{a}}$			J				
5579.30 <i>13</i>	$(1/2 \text{ to } 7/2)^{@}$			J				
5591.62 11	$(1/2 \text{ to } 7/2)^{@}$			J	м			XREF: M(5595).
5602.0 <i>3</i> 5635	$(1/2 \text{ to } 7/2)^{@}$			J	м			
5646 5 5713 5	(5/2 ⁻ ,7/2 ⁻)						Y Y	J^{π} : L(d, ³ He)=(3) from 0 ⁺ .
5723 5734.8 <i>3</i>	$(1/2 \text{ to } 7/2)^{\textcircled{0}}$			J	M			
5768 13 16	$(21/2^{+})$		DF		M			$F(level)$: from $({}^{16}\Omega \alpha m)$
5700.15 10	(=1/2)			_				$J^{\pi}: 1271.0\gamma Q, \Delta J=2 \text{ to } 17/2^+.$
5/97.32 10	@			J	М			XREF: M(5795).
5803.87 10	$(1/2 \text{ to } 7/2)^{\sim}$			J				
5828.33 14	$(1/2 \text{ to } 7/2)^{\textcircled{0}}$			J				

⁶³Cu Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$		XRE	F		Comments
5835 <i>3</i>	(5/2 ⁻ ,7/2 ⁻)			М	Т	Y	XREF: Y(5831). E(level): from $(n,n'\gamma)$. J^{π} : L(d. ³ He)=(3) from 0 ⁺ .
5859				М			
5867.63 15	$(1/2 \text{ to } 7/2)^{\textcircled{a}}$			J			
5994	., ,,			М			
6032				М			
6070				М			
6092.78 11				J			
6104				M			
6283 14 <i>14</i>	$(19/2^+)$		CDF	т			$F(level)$: from $({}^{16}\Omega \alpha m)$
0205.14 14	(1)/2)		CDL	-			J^{π} : 1786.6v D. AI=1 to 17/2 ⁺ , assuming spin
							increases as level energy.
6374.86 10				J			
6495.5 11	$(23/2)^+$		E	I			J^{π} : 1136.5 γ (19/2) ⁺ , 726.4 γ to (21/2 ⁺).
6749.4 6	(22/2+)		E				
/0/3./1 20	$(23/2^{+})$		CDE				J^* : 789.7 γ E2, $\Delta J=2$ to (19/2), assuming spin
7282 7 9	(1/2 to 7/2)			1			I^{π} : weak 1947 4 γ to (1/2 ⁺)
7363.94 9	(1/2 to 7/2) (1/2 to 7/2)			j			J^{π} : weak 2557.6 γ to $(1/2^+)$.
7400.3.5	1/2&			1			
7475 27 9	$1/2^{\&}$			1			
7479.2 6	1/2		Е	5			
7513.2 4	(3/2) ^{&}			J	S		XREF: S(7500).
7532.20 22	1/2&			J			
7607.80 10	(1/2) ^{&}			J	s		
7712.2 2	(1/2 to 7/2)			J			J^{π} : weak 2905.9 γ to (1/2 ⁺).
7732.60 11	(1/2) ^{&}			J			
7745.37 13	(1/2 to 7/2)			J			J^{π} : weak 2410 γ to (1/2 ⁺).
7772.7 5	(1/2 to 7/2)		_	J			J^{π} : weak 2966.5 γ to (1/2 ⁺).
8304.7 3	$(25/2^{+})$ $1/2^{+}$	15 oV	E	v			$J^*: 1291.8\gamma D, \Delta J=1 \text{ to } (23/2^+).$
8400 2	1/2 $1/2^+$	10 eV		K			
8467 2	$1/2^+$	15 eV		ĸ			
8500 2	1/2+	15 eV		K			
8523 2	1/2+	125 eV		K			
8526 2	$1/2^+$	30 eV		K			
8538 2	$(1/2^+)$ $1/2^+$	15 eV 35 eV		K V			
8556 2	1/2 $1/2^{-}$	30 eV		K			
8558 2	$1/2^+$	30 eV		ĸ			
8562 2	1/2+	135 eV		K			
8564.66 24	$1/2^{-\&}$	180 eV		JK			XREF: K(8563).
							E(level), J^{π} : IAS(⁶³ Ni g.s.).
8574 2	$1/2^{+}$	90 eV		K			
8594	1/0+	20 14		K			
8618 2	$1/2^+$ $1/2^+$	30 eV		K V			
8628.8 1	$\frac{1/2}{(5/2^{-})}$	10 6 V		א			$F(level)$: IAS $(^{63}Ni 87 level)$
8632 2	$1/2^+$	65 eV		K			$\mathbf{L}(1,1,1,1,1,1,1,1,$
8639.32 23	$(5/2^{-})$			ЈК			
8657.7	5/2-			K			

⁶³Cu Levels (continued)

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
8661.2	$1/2^+$	25 eV	ĸ	
8686 2	$1/2^+$	50 eV	ĸ	
869376	$(3/2^{-})$	20 eV	IK m	XREF: m(8660)
0000.1	(3/2)	20 0 1	5K m	J^{π} : L(³ He,d)=1 from 0 ⁺ for a level at 8660 40; (3/2 ⁻) from analysis of (p, γ):res data.
8700.9 6	(3/2)		JK m	XREF: m(8660). J^{π} : L(³ He,d)=1 from 0 ⁺ for a level at 8660 40; (3/2 ⁻) from analysis of (p, γ):res data.
8706 2	$1/2^{+}$	55 eV	K	
8713 2	$1/2^{+}$	60 eV	K	
8716.7	3/2-	5 eV	K	
8718.6 8	$(3/2^{-})$	10 eV	JK	
8719.1 8	$(3/2^{-})$		Jk	
8719.2 5	$(3/2^{-})$		Jk	
8727.5 5	$(3/2^{-})$	15 eV	JK	
8731 2	$1/2^{+}$	15 eV	K	
8731.7 6	$(3/2^{-})$	10 eV	JK	
8734.6 6	$(3/2^{-})$	5 eV	JK	
8738.6 5	$(3/2^{-})$	10 eV	JK	
8740 2	$1/2^{+}$	40 eV	K	
8741.5	3/2-	40 eV	K	
8742 2	3/2-	20 eV	K	
8743.2 6	$(3/2^{-})$	125 eV	ЈК	
8743.7 5	$(3/2^{-})$		J	
8746.6 6	$(3/2^{-})$	5 eV	JK	
8747.6 6	$(3/2^{-})$	20 eV	JK	
8750.5 5	$(3/2^{-})$	5 eV	JK	
8750 2	1/2	10 eV	K	
8760 2	$1/2^{-1}$	50 eV	K	VDEE (9700)
8703 2	(3/2)	10 eV	K m	AREF: III(8/90).
8794 2	$\frac{1}{2}$	15 eV	K V	
8790 2	$\frac{1/2}{(3/2^{-} 1/2^{-})}$	10 eV	K K m	VDEF: $m(2700)$
8800 2	(3/2, 1/2) $(3/2^{-} 1/2^{-})$	10 eV	K m	XREF: $m(8790)$.
8801 2	(3/2, 1/2) $1/2^+$	10 eV	K	AREA : III(0790).
8806 2	$(5/2^+ 3/2^+)$	5 eV	ĸ	
8812.2	$1/2^+$	40 eV	ĸ	
8820 2	$1/2^+$	55 eV	ĸ	
8829 2	$1/2^+$	10 eV	K	
8836 2	$1/2^+$	45 eV	K	
8837 2	$1/2^{+}$	10 eV	К	
8876 2	$1/2^{+}$	145 eV	К	
8884 2	1/2+	60 eV	K	
8898 2	$1/2^{+}$	25 eV	K	
8905 2	$(1/2^+)$	5 eV	K	
8919 2	$1/2^{+}$	10 eV	K	
8922 2	1/2-	20 eV	K	
8924 2	1/2+	10 eV	K	
8931 2	1/2+	20 eV	K	
8937 2	1/2+	90 eV	K	
8943 2	1/2+	115 eV	K	
8975 2	1/2+	20 eV	K	
8992 2	1/2+	35 eV	K	
9000 2	1/2'	35 eV	K	
9001 Z	1/2	10 e v	K	

⁶³Cu Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF
9002 2	$(5/2^+, 3/2^+)$	5 eV	ĸ
9014 2	$1/2^+$	100 eV	ĸ
9020 2	$(1/2^{-})$	15 eV	ĸ
9021 2	$(1/2^{+})$	10 eV	v v
0020 2	$\frac{1}{2}$	40 CV	K V
9029 2	$\frac{1}{2}$	20 eV	K V
9033 2	$\frac{1}{2}$	30 eV	K V
9038 2	$1/2^{+}$	40 eV	K
9043 2	$1/2^{+}$	90 eV	K
9048 2	1/2*	30 eV	K
9050 2	1/2	70 eV	K
9057 2	1/2	75 eV	K
9058 2	$(5/2^+, 3/2^+)$	10 eV	K
9064 2	$1/2^{+}$	15 eV	K
9068.0	$1/2^{-}, 3/2^{-}$	20.0 eV 6	K
9068 2	$(5/2^+, 3/2^+)$	5 eV	K
9090 2	$1/2^{+}$	40 eV	K
9092 2	$1/2^{+}$	50 eV	K
9094 2	$1/2^{+}$	95 eV	K
9097 2	$1/2^{+}$	40 eV	K
9103 2	$1/2^+$	35 eV	K
9109.9	$1/2^{-},3/2^{-}$	24.9 eV 38	K
9110 2	$1/2^{-1}$	10 eV	K
9111.9	$3/2^{-}$	5.1 eV 3	K
9112.2	$1/2^+$	25 eV	ĸ
9116 2	$1/2^{-}$	20 eV	K
9118.4	$3/2^{-}$	16.8 eV 39	ĸ
0120.1	$\frac{3}{2}$	73.4 eV 48	K K
0123.6	$\frac{3}{2}$	15.1 eV 40	K V
9123.0	$\frac{3}{2}$	20 aV	K V
9124 2	$\frac{1}{2}$	30 eV	K V
9120.0	$\frac{5}{2}$	21.1 ev 50	K V
9128 2	$(5/2^{-1})$	15 eV	K
9133.6	3/2	70.9 eV 43	K
9135.6	$\frac{3}{2}$	19.2 eV 34	K
9138 2	1/2	60 eV	K
9147 2	1/2+	20 eV	K
9152 2	$(3/2^{-}, 1/2^{-})$	10 eV	K
9153 2	$(3/2^{-}, 1/2^{-})$	10 eV	K
9154 2	$1/2^{+}$	20 eV	K
9161 2	$(1/2^{-},3/2^{-})$	5 eV	K
9166 2	$1/2^{+}$	60 eV	K
9170 2	$1/2^{+}$	35 eV	K
9171 2	$(1/2^{-}, 3/2^{-})$	5 eV	K
9175 2	$(3/2^{-}, 1/2^{-})$	5 eV	K
9205.5	$1/2^{-}$	30 eV	K
9273.6	1/2-	30 eV	K
9278.7	$1/2^{-}$	30 eV	K
9363.3	$\frac{3}{2}$	10 eV	ĸ
9364 3	$3/2^{-}$	12 eV	K
9365.1	$1/2^{-}$	63 eV	ĸ
0380.0	$\frac{1}{2}$	16 eV	IX V
0421 0	$\frac{1}{2}$	10 CV	IX V
7421.0 0490 5 6	1/2	40 6 V	R E
9409.3 0 0509 5	1/2-	66 aV	E.
9508.5	1/2	ob ev	K
9538.3	1/2	69 eV 7	K
9549.5	1/2-	82 eV 12	K

⁶³Cu Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
9566.8	$1/2^{-}$	170 eV 15	K	
9567.6	$1/2^{-}$	66 eV 14	K	
9571.6	$1/2^{-}$	86 eV 11	K	
9575.5	$1/2^{-}$	104 eV 10	K	
9576.4	$1/2^{-}$	191 eV 13	K	
9584	$1/2^{-}$	207 eV 13	K	
9586.1	$1/2^{-}$	125 eV 11	K	
9595.7	$1/2^{-}$	160 eV 13	K	
9596.6	$1/2^{-}$	512 eV 19	K	
9598.9	$1/2^{-}$	51 eV 8	K	
9608.4	3/2-	41 eV 5	K	
9615.7	$1/2^{-}$	31 eV 7	K	
9619.2	$1/2^{-}$	50 eV 8	K	
9631.8	$1/2^{-}$	25 eV	K	
9682.8	1/2-	35 eV	K	
9808.3	9/2+		K	
9811.1	1/2-	40 eV	K	
9811.2 15	9/2+		JK	XREF: K(9812.2).
9822.2	1/2-	32 eV 7	K	
9823.5	3/2-	13 eV 5	K	
9830.2	$1/2^{-}$	46 eV 6	K	
9834.2 15	0/0+		J	
9836.7	9/2+		K	VDEE. K(0040)
9846.2 15	9/2 ⁺		JK	AKEF: $K(9848)$. E(level): from (n c):E rec. Other 0852.5 from
9850.3	9/2		JK	E(level): from (p,γ) :E=res. Other: 9852.5 from (p,p) :res.
9854.4	9/2+		K	
9855.5	9/2 ⁺		JK	
9856.6	9/2		K	
9857.6	9/2+		K	
9858.9	9/2	06 5 - VL 20	K	
9839.7	$\frac{3}{2}$	20.5 eV 52	K	
9803.3	9/2		K	I^{π} , $0/2^+$ IAS assigned in 1072Sz01; but not $0/2^+$
9000	2/2-	22. N. (J 	IAS in 1979Vo01,1976Ar01 in (p,γ) :E=res.
9866.8	3/2	22 eV 4	K	
9808.8	9/2	22.4 eV	K	
9000.3	5/2 1/2=	23.4 eV 4	K V	
9913.2	1/2	12 CV 7	N V	
0070 40	$\frac{1}{2}$	01.7 CV 7	M	$I\pi$, $I(3IIad) = 4$ from 0^+
9970 40 ~10860	1/2 ,9/2 5/2+		ri V	J : L(He, d) = 4 from 0.
≈10800 10060 40	5/2		K V M	YDEF : <i>K</i> (10050)
11145			K II K	$\mathbf{X}\mathbf{K}\mathbf{L}\mathbf{I}^{*}, \mathbf{K}(10550).$
11230 40	9/2+		M	J ^{π} : L(He,d)=4 from 0 ⁺ ; IAS of 2514, 9/2 ⁺ level in ${}^{63}Ni$
11243			к	- · · · ·
11383			ĸ	
11553			ĸ	
11633			K	
11725			K	
11858			К	
11961			К	
12099			K	

⁶³Cu Levels (continued)

E(level) [†]	XREF
14.9×10 ³	S
17.2×10^3	S
32.0×10^3	S

[†] From a least-squares fit to γ -ray energies with uncertainties for levels connected with those γ rays; where precise E(level) values are given but without precise γ -ray energies, E(level) values are from (p,γ) :E=res, deduced by 1986De14 based on their measured E γ data which however are not explicitly listed in 1986De14; where there are no γ data, E(level) values are from transfer reactions, unless otherwise noted.

^{\ddagger} For yrast levels in (HI,xn γ) datasets, it is assumed spin ascends as excitation energy increases; assignments for levels in (p,p),(p,p'),(p,n):res are from R-matrix analysis of resonance data.

[#] Halflife from DSAM in (d,³He γ) and width from R-matrix analysis of measured $\sigma(E_p)$ in (p,p),(p,p'),(p,n):res, unless otherwise noted.

noted. ^(a) (1/2:7/2) based on weak primary γ from 1/2 or (1/2) resonance in (p, γ):E=res. Additional arguments are given under comments if available.

[&] From analysis of resonance data in (p,γ) :E=res.

						Ado	opted Levels,	Gammas (contin	ued)						
							<u>γ(</u>	⁶³ Cu)							
Additional in	Additional information 1.														
E _i (level)	\mathbf{J}_i^{π}	Eγ‡	I_{γ}^{\ddagger}	\mathbf{E}_{f}	J_f^{π}	Mult. [#]	δ#	$lpha^\dagger$	Comments						
669.724	1/2-	669.35 22	100	0.0	3/2-	M1+E2	0.106 5	0.000520 7	B(M1)(W.u.)=0.363 13; B(E2)(W.u.)=15.7 16 α (K)=0.000467 7; α (L)=4.62×10 ⁻⁵ 6; α (M)=6.50×10 ⁻⁶ 9 α (N)=1.990×10 ⁻⁷ 28						
									E _γ : unweighted average of 669.64 5 from ⁶³ Zn ε + β ⁺ decay, 669.4 3 from (α ,pγ), 668.5 2 from (α ,pnγ), 669.6 1 from (n,n' γ), and 669.6 1 from (d, ³ He γ).						
									 Mult.: M1 from ce data in ⁶³Zn ε decay; E2 component from Coulomb excitation. δ: deduced from adopted B(E2)↑=0.0116 6 and T_{1/2}=0.200 ps 						
962.145	5/2-	962.04 <i>4</i>	100	0.0	3/2-	M1+E2	-0.479 21	0.000251 4	7. B(M1)(W.u.)=0.0341 +26-22; B(E2)(W.u.)=14.6 +16-14 α (K)=0.0002257 32; α (L)=2.229×10 ⁻⁵ 32; α (M)=3.13×10 ⁻⁶ 4 α (N)=9.60×10 ⁻⁸ 14						
									E _γ : weighted average of 962.07 4 from ⁶³ Zn ε + β ⁺ decay, 962.0 <i>I</i> from (¹⁶ O, <i>α</i> pγ), 961.8 <i>I</i> from (¹⁸ O, <i>α</i> 2pnγ), 961.8 <i>3</i> from (<i>α</i> ,pγ), 962.1 <i>2</i> from (<i>α</i> ,pnγ), 962.1 <i>I</i> from (n,n'γ), and 962.0 <i>2</i> from (d, ³ Heγ).						
									Mult.: D+Q from $\gamma(\theta)$; E1+M2 ruled out by RUL. δ : from $\gamma(\theta)$ in Coulomb excitation. Others: $-0.47 + 4-9$ from $(\alpha, p\gamma)$, $-0.3 \ 3$ from $(\alpha, pn\gamma)$; 0.51 4 from adopted B(E2)1-0.0355 17 and adopted T ₁ = 0.59 ns 4						
1326.014	7/2-	364.9 1	19.4 <i>4</i>	962.145	5/2-	M1+E2	-0.060 5	2.04×10 ⁻³ 3	$\alpha(K)=0.001833\ 26;\ \alpha(L)=0.0001836\ 26;\ \alpha(M)=2.58\times10^{-5}\ 4$ $\alpha(N)=7.84\times10^{-7}\ II$						
									B(M1)(W.u.)=0.124 <i>12</i> ; B(E2)(W.u.)=5.8 + <i>12</i> -11 E _γ : weighted average of 365.0 <i>1</i> from (¹⁶ O,αpγ), 364.9 <i>1</i> from (¹⁸ O,αp2nγ), 364.9 <i>2</i> from (α,pnγ), 364.9 <i>1</i> from (n,n'γ), and 364.7 <i>2</i> from (d, ³ Heγ). Other: 365.2 <i>4</i> from 63 Zn ε+β ⁺ decay.						
									I _{γ} : weighted average of 20.8 <i>13</i> from (α , $p\gamma$), 19.3 <i>4</i> from (p , γ):E=res, 18.8 5 from (p , $\gamma'\gamma$), and 20.2 6 from Coulomb excitation. Others: 18 <i>4</i> from ⁶³ Zn ε + β ⁺ decay, 22.2 <i>33</i> from (n , $n'\gamma$), and 23.5 25 from (d , ³ He γ).						
		1226 00 10	100.0.4	0.0	2/2-	52		0.0001757.05	Mult., o: D+Q and δ from $\gamma(\theta)$; E1+M2 ruled out by KUL. Other δ values: $-0.10 + 3 - 5$ in $(p,p'\gamma)$, $-0.18 + 8 - 10$ in $(\alpha, p\gamma)$, $-0.25 30$ in $(\alpha, pn\gamma)$.						
		1320.90 10	100.0 4	0.0	5/2	E2		0.0001757 25	$\begin{array}{l} D(E2)(W,U,)=15.1 \ I2 \\ \alpha(K)=0.0001268 \ I8; \ \alpha(L)=1.251\times10^{-5} \ I8; \ \alpha(M)=1.758\times10^{-6} \\ 25 \\ \alpha(N)=5.37\times10^{-8} \ 8: \ \alpha(IPE)=3.47\times10^{-5} \ 5 \end{array}$						

н

					A	dopted Level	s, Gammas (cor	ntinued)
						<u>γ(⁶³C</u>	u) (continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ} ‡	E_f J	$\frac{\pi}{f}$ Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments
								E _γ : weighted average of 1326.99 <i>11</i> from ⁶³ Zn ε+β ⁺ decay, 1327.0 <i>1</i> from (¹⁶ O,αpγ), 1326.7 <i>1</i> from (¹⁸ O,αp2nγ), 1326.6 <i>3</i> from (α,pγ), 1327.0 <i>2</i> from (α,pnγ), and 1327.0 <i>2</i> from (n,n'γ). Other: 1327.0 <i>4</i> from (d, ³ Heγ). I _γ : from (p,γ):E=res. Others: 100 <i>6</i> from ⁶³ Zn ε+β ⁺ decay, 100.0 <i>13</i> from (α,pγ), 100.0 <i>33</i> from (n,n'γ), 100.0 <i>5</i> from (p,p'γ), 100.0 <i>25</i> from (d, ³ Heγ), and 100.0 <i>10</i> from Coulomb excitation. Mult.: Q from γγ(DCO) in (¹⁶ O,αpγ) and (¹⁸ O,αp2nγ); M2 ruled out by RUL. Other: Q(+M3) with δ =-0.017 <i>52</i> from
1412.124	5/2-	449.5 <i>4</i>	30.4 4	962.145 5/	2 ⁻ M1+E2	+0.115 10	1.27×10 ⁻³ 2	γ(θ) in (p,p'γ). α(K)=0.001140 16; α(L)=0.0001137 16; α(M)=1.600×10-5 23 α(N)=4.87×10-7 7 B(M1)(W.u.)=0.035 +9-6; B(E2)(W.u.)=4.0 +13-9 $ E_γ: unweighted average of 449.93 5 from 63Zn ε+β+ decay, 448.0 1 from (16O,αpγ), 449.7 5 from (18O,α2pnγ), 450.0 1 from (n,n'γ), and 449.7 2 from (d,3Heγ). $ $ I_γ: weighted average of 31.1 22 from 63Zn ε+β+ decay, 28.8 $ 17 from (α,pγ), 30.4 4 from (p,γ):E=res, 30.8 9 from (n,n'γ), 30.5 14 from (p,p'γ). Others: 56 6 from (d,3Heγ), and 24.4 11 from Coulomb excitation are discrepant. Mult.,δ: D+Q and δ from Coulomb excitation; E1+M2 ruled out by RUL. Other δ values: +0.09 +49-23 in (p,p'γ), +0.11 +25 + 18 in (α ref)
		742.27 10	8.4 5	669.724 1/	2 ⁻ E2		0.000571 8	^{+2.5-1/8} In (α, pγ). B(E2)(W.u.)=6.9 +17-12 α (K)=0.000512 7; α (L)=5.11×10 ⁻⁵ 7; α (M)=7.18×10 ⁻⁶ 10 α (N)=2.161×10 ⁻⁷ 30 E _γ : from ⁶³ Zn ε+β ⁺ decay. Other: 742.0 15 from (n,n'γ). I _γ : weighted average of 9.1 11 from ⁶³ Zn ε+β ⁺ decay, 9.1 4 from (p,γ):E=res, 8.0 4 from (p,p'γ), and 5.9 11 from Coulomb excitation. Other: 13.7 14 from (α,pγ) and 17 6 from (n,n'γ) seem discrepant. Unweighted average of all is 10.5 17. Mult.: Q from γ(θ) in (α,pγ) and (p,p'γ); M2 ruled out by RUL.

Т

	Adopted Levels, Gammas (continued)												
							γ ⁽⁶³ Cu) (continued)	d)					
E _i (level)	\mathbf{J}_i^{π}	E _γ ‡	I_{γ}^{\ddagger}	E_f	J_f^{π}	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments				
1412.124	5/2-	1411.7 4	100.00 13	0.0 3	/2 ⁻ M	1+E2	+0.66 +5-7	0.0001641 25	B(M1)(W.u.)=0.0027 +7-4; B(E2)(W.u.)=1.00 +26-22 α(K)=0.0001050 15; α(L)=1.033×10 ⁻⁵ 15; α(M)=1.453×10 ⁻⁶ 21 α(N)=4.46×10 ⁻⁸ 6; α(IPF)=4.72×10 ⁻⁵ 9 E _γ : unweighted average of 1412.07 5 from ⁶³ Zn ε+β ⁺ decay, 1410.0 <i>I</i> from (¹⁶ 0,αpγ), 1412.3 <i>3</i> from (¹⁸ 0,αp2nγ), 1411.8 <i>3</i> from (α,pγ), 1412.1 <i>I</i> from (n,n'γ), and 1412.2 2 from (d, ³ Heγ). I _γ : from Coulomb excitation. Others: 100 4 from ⁶³ Zn				
1547 100	2/2-	504.00.15						0.000/00.22	$\varepsilon + \beta^+$ decay, 100 6 from ($^{18}O, \alpha p 2n\gamma$), 100.0 24 from ($\alpha, p\gamma$), 100.0 4 from (p,γ):E=res, 100 4 from ($n,n'\gamma$), 100.0 17 from ($p,p'\gamma$), and 100 6 from ($d,^{3}He\gamma$). Mult.: D+Q from $\gamma(\theta)$; E1+M2 ruled out by RUL. δ : weighted average of +0.76 7 from Coulomb excitation, +0.61 +9-8 from ($\alpha, p\gamma$), +0.62 +5-7 from ($p,p'\gamma$).				
1547.109	3/2-	584.90 15	24.4 11	962.145 5	/2 ⁻ (N	11(+E2))	+0.10 +14-15	0.000698 22	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000627 \ T9; \ \alpha(\mathbf{L}) = 6.22 \times 10^{-5} \ 20; \\ &\alpha(\mathbf{M}) = 8.75 \times 10^{-6} \ 27 \\ &\alpha(\mathbf{N}) = 2.67 \times 10^{-7} \ 8 \\ &B(\mathbf{M}1)(\mathbf{W}.\mathbf{u}.) = 0.182 \ 32; \ B(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) < 59 \\ &\mathbf{E}_{\gamma}: \text{ weighted average of } 584.85 \ 15 \ \text{from } ^{63}\text{Zn } \varepsilon + \beta^+ \\ &\text{ decay and } 585.0 \ 2 \ \text{from } (\mathbf{n},\mathbf{n}'\gamma). \end{aligned}$				
									 I_γ: unweighted average of 24 5 from ⁶³Zn ε+β⁺ decay, 24.5 21 from (α,pγ), 28.2 5 from (p,γ):E=res, 21.1 9 from (n,n'γ), 22.1 5 from (p,p'γ), and 26.3 13 from Coulomb excitation. Mult.: D(+Q) from γ(θ); Δπ=no from level scheme. δ: weighted average of +0.05 +14-15 from (α,pγ) and +0.17 +16-17 from (n n'γ) 				
		877.0 2	2.62 25	669.724 1	/2 ⁻ (N	11(+E2))	-0.6 +7-16	0.00031 4	$\begin{aligned} \alpha(\mathbf{K}) &= 0.0028 \ 4; \ \alpha(\mathbf{L}) &= 2.8 \times 10^{-5} \ 4; \ \alpha(\mathbf{M}) &= 3.9 \times 10^{-6} \ 6 \\ \alpha(\mathbf{N}) &= 1.19 \times 10^{-7} \ 16 \\ \mathbf{B}(\mathbf{M}1)(\mathbf{W}.\mathbf{u}.) &= 0.0043 \ + 30 - 35; \ \mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) < 14 \\ \mathbf{E}_{\gamma}: \ \text{from } (\mathbf{n},\mathbf{n}'\gamma). \ \text{Other: } 877.2 \ 8 \ \text{from } {}^{63}\mathbf{Zn} \ \varepsilon + \beta^+ \\ \text{decay.} \end{aligned}$				
		1547.05 6	100.0 5	0.0 3	/2 ⁻ M	1+E2	+0.20 7	0.0001783 27					

From ENSDF

$^{63}_{29}$ Cu₃₄-20

I.

						Adopted	Levels, Gan	nmas (continu	ed)
							γ ⁽⁶³ Cu) (con	ntinued)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\ddagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments
					, , , , , , , , , , , , , , , , , , ,				α(M)=1.193×10-6 17 α(N)=3.67×10-8 5; α(IPF)=8.22×10-5 13 Εγ: weighted average of 1547.03 6 from 63Zn ε+β+ decay, 1546.6 4 from (α,pγ), 1547.1 1 from (n,n'γ), and 1547.3 3 from (d,3Heγ). Iγ: from (p,γ):E=res. Others: 100 4 from 63Zn ε+β+ decay, 100.0 21 from (α,pγ), 100.0 32 from (n,n'γ), 100.0 6 from (p,p'γ), and 100.0 16 from Coulomb excitation. Mult.: D+Q from γ(θ); E1+M2 ruled out by RUL. δ: unweighted average of +0.13 +5-4 in (α,pγ) and +0.27 5 in (γ,γ'). Other: +0.05 +6-8 in (p,p'γ).
1861.34	7/2-	448.4 ^{@b} 5		1412.124	5/2-				E_{γ} : seen only in (¹⁸ O, α p2n γ); contaminated by other γ with similar energy.
		534.0 [@] 3	5.12 26	1326.014	7/2-	[M1,E2]		0.00116 32	$\alpha(K)=0.00104\ 28; \ \alpha(L)=1.05\times10^{-4}\ 29; \ \alpha(M)=1.5\times10^{-5}\ 4$ $\alpha(N)=4.4\times10^{-7}\ 12$ $I_{\gamma}:$ weighted average of 5.09 26 from (¹⁸ O, α p2n γ) and 6.3 18 from Coulomb excitation.
		898.9 <i>1</i>	77.3 18	962.145	5/2-	M1+E2	+0.040 7	0.000278 4	B(M1)(w.u.)=0.0003 +11-12 II M1, B(E2)(w.u.)=38 γ II E2. $\alpha(K)=0.0002495 35; \alpha(L)=2.463\times10^{-5} 34; \alpha(M)=3.46\times10^{-6} 5$ $\alpha(N)=1.063\times10^{-7} 15$ B(M1)(W.u.)=0.0200 +33-37; B(E2)(W.u.)=0.069 +28-25 E _γ : weighted average of 899.1 4 from ⁶³ Zn ε+β ⁺ decay, 899.0 I from (¹⁶ O,αpγ), 898.8 I from (¹⁸ O,αp2nγ), 898.7 3 from (α,pγ), 899.1 2 from (α,pnγ), 899.2 4 from (n,n'γ), and 899.1 2 from (d, ³ Heγ). I _γ : unweighted average of 82 17 from ⁶³ Zn ε+β ⁺ decay, 76.7 32 from (α,pγ), 81.8 18 from (p,γ):E=res, 81.8 23 from (n,n'γ), 75 4 from (p,p'γ), 69.5 17 from (d, ³ Heγ), and 74.5 18 from Coulomb excitation. Mult.: D+Q from $\gamma(\theta)$; E1+M2 ruled out by RUL. δ: from $\gamma(\theta)$ in Coulomb excitation. Others: +0.05 +3-2 or -5.1 +9-16 in (p,p'γ), +0.05 5 in (α,pγ), +0.05 +10-20 in
		1861.1 <i>1</i>	100.0 <i>17</i>	0.0	3/2-	E2		0.000317 4	$(\alpha, pn\gamma)$. B(E2)(W.u.)=1.46 +24-27 α (K)=6.46×10 ⁻⁵ 9; α (L)=6.34×10 ⁻⁶ 9; α (M)=8.92×10 ⁻⁷ 12 α (N)=2.74×10 ⁻⁸ 4; α (IPF)=0.0002448 34 E _γ : weighted average of 1861.2 3 from ⁶³ Zn ε+β ⁺ decay, 1861.0 <i>I</i> from (¹⁶ O,αpγ), 1860.9 <i>I</i> from (¹⁸ O,αp2nγ), 1861.2 2 from (α,pnγ), 1861.2 3 from (n,n'γ), and 1861.3 <i>I</i> from (d, ³ Heγ). Other: 1861.0 4 from (α,pγ).

						Adopted	l Levels, Gamma	s (continued)	
							$\gamma(^{63}Cu)$ (continu	ued)	
E _i (level)	\mathbf{J}_i^{π}	E _γ ‡	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments
1052.02	_		100	0.001145					I _γ : from (d, ³ Heγ). Others: 100 <i>15</i> from ⁶³ Zn ε + β ⁺ decay, 100.0 <i>32</i> from (α ,p γ), 100.0 <i>18</i> from (p, γ):E=res, 100.0 <i>29</i> from (n,n' γ), 100 <i>4</i> from (p,p' γ), and 100.0 <i>22</i> from Coulomb excitation. Mult.: Q from $\gamma(\theta)$ in (α ,p γ), $\gamma\gamma$ (DCO) in (¹⁶ O, α p γ) and (¹⁸ O, α p2n γ); M2 ruled out by RUL. Other: E2(+M3) with δ =-0.1 <i>1</i> from (α ,pn γ), +0.07 +7-5 from (p,p' γ).
1952.03 2012.274	3/2-	990.0 <i>1</i> 464.0 <i>14</i>	4.6 8	962.145 1547.109	5/2 3/2 ⁻	[M1]		1.17×10 ⁻³ 2	E _γ : from (*0,αpγ). $\alpha(K)=0.001046 \ I6; \ \alpha(L)=0.0001043 \ I6; \ \alpha(M)=1.467\times10^{-5} \ 23$ $\alpha(N)=4.47\times10^{-7} \ 7$ B(M1)(W.u.)=0.159 +41-39 I _γ : from (p,γ):E=res. Other: 14 6 for a possible doublet in (n,n'γ).
		599.147	4.0 11	1412.124	5/2-	[M1]		0.000658 <i>9</i>	$\alpha(K)=0.000591 \ 8; \ \alpha(L)=5.86\times10^{-5} \ 8; \alpha(M)=8.25\times10^{-6} \ 12 \alpha(N)=2.522\times10^{-7} \ 35 B(M1)(W.u.)=0.064 \ 21 E_{v.I_{v}}: from (p,v):E=res.$
		1048.8 5	52.7 11	962.145	5/2-	M1+E2	+0.23 +15-9	0.000205 4	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0001840 \ 35; \ \alpha(\mathbf{L}) = 1.814 \times 10^{-5} \ 35; \\ &\alpha(\mathbf{M}) = 2.55 \times 10^{-6} \ 5 \\ &\alpha(\mathbf{N}) = 7.83 \times 10^{-8} \ 15 \\ &\mathbf{B}(\mathbf{M}1)(\mathbf{W}.\mathbf{u}.) = 0.150 \ + 26 - 32; \ \mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) = 12 \ + 19 - 8 \\ &\mathbf{E}_{\gamma}: \ \text{from} \ ^{63}\mathbf{Zn} \ \varepsilon + \beta^{+} \ \text{decay. Others: } 1048.7 \ 8 \ \text{from} \\ &(\alpha, p\gamma) \ \text{and } 1049.0 \ 17 \ \text{from} \ (n, n'\gamma). \\ &\mathbf{I}_{\gamma}: \ \text{from} \ (p, \gamma): \mathbf{E} = \text{res. Others: } 42 \ 11 \ \text{from} \ ^{63}\mathbf{Zn} \\ &\varepsilon + \beta^{+} \ \text{decay, } 48 \ 6 \ \text{from} \ (\alpha, p\gamma), \ 53.0 \ 28 \ \text{from} \\ &(n, n'\gamma), \ \text{and } 55.0 \ 32 \ \text{from} \ (p, p'\gamma). \\ &\mathbf{Mult.}_{\delta}: \ \mathbf{D} + \mathbf{Q} \ \text{and} \ \delta \ \text{from} \ \gamma(\theta) \ \text{in} \ (\alpha, p\gamma); \ \mathbf{E1} + \mathbf{M2} \\ &\text{ruled out by RUL. Other: } \le + 0.36 \ \text{in} \ (p, p'\gamma); >7 \\ &\text{also from} \ (\alpha, p\gamma) \ \text{is ruled out by RUL.} \end{aligned}$
		1341.7 6	32 6	669.724	1/2-	(M1(+E2))	-0.6 +7-16	0.000160 13	$\begin{split} &\alpha(\mathbf{K}) {=} 0.000116 \ 6; \ \alpha(\mathbf{L}) {=} 1.14 {\times} 10^{-5} \ 7; \\ &\alpha(\mathbf{M}) {=} 1.60 {\times} 10^{-6} \ 9 \\ &\alpha(\mathbf{N}) {=} 4.91 {\times} 10^{-8} \ 27; \ \alpha(\mathrm{IPF}) {=} 3.1 {\times} 10^{-5} \ 6 \\ &\mathbf{B}(\mathbf{M}1)(\mathbf{W}.\mathbf{u}.) {=} 0.034 \ {+} 30 {-} 29; \ \mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) {<} 51 \\ &\mathbf{E}_{\gamma}: \ \mathrm{from}^{\ 63} \mathrm{Zn} \ {\varepsilon} {+} \beta^{+} \ \mathrm{decay}. \ \mathrm{Other:} \ 1342.0 \ 18 \ \mathrm{from} \\ &(\mathbf{n},\mathbf{n}'\gamma). \\ &\mathbf{I}_{\gamma}: \ \mathrm{unweighted} \ \mathrm{average} \ \mathrm{of} \ 23 \ 8 \ \mathrm{from}^{\ 63} \mathrm{Zn} \ {\varepsilon} {+} \beta^{+} \\ &\mathrm{decay}, \ 46.3 \ 11 \ \mathrm{from} \ (\mathbf{p},\gamma) {:} \mathbf{E} {=} \mathrm{res}, \ 33 \ 12 \ \mathrm{from} \end{split}$

Т

						Adopt	ted Levels, Gamm	as (continued)		63 29
							γ (⁶³ Cu) (conti	nued)		u ₃₄ -23
E _i (level)	\mathbf{J}_i^{π}	E_{γ} ‡	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments	
2012.274	3/2-	2011.4 <i>3</i>	100.0 <i>21</i>	0.0	3/2-	(M1(+E2))		0.000350 29	(n,n' γ), and 24.2 32 from (p,p' γ). Other: 74 7 from (α ,p γ) is largely discrepant with others. Mult.: D(+Q) from $\gamma(\theta)$ in (p,p' γ); $\Delta \pi$ =no from level scheme. $\alpha(K)=5.48\times10^{-5}$ 14; $\alpha(L)=5.37\times10^{-6}$ 14; $\alpha(M)=7.55\times10^{-7}$ 20 $\alpha(N)=2.32\times10^{-8}$ 6; $\alpha(IPF)=0.000289$ 28 E_{γ} : weighted average of 2011.8 5 from ⁶³ Zn $\varepsilon+\beta^+$ decay, 2011. 7 from (α ,p γ), and 2011.2 3 from (n,n' γ). Ly: from (α , γ): E=res. Others: 100 16 from ⁶³ Zn $\varepsilon+\beta^+$ decay. 10	.4
2062.45	(3/2)-	515.0 <i>10</i>	75.9 19	1547.109	3/2-	(M1+E2)		0.0013 4	Fig. 1001 (p,γ).12–103. Others. 100 for from 2.11 σ 1/9 decay, 10 7 from (α,pγ), 100 4 from (n,η'γ), and 100 4 from (p,p'γ). Mult.: D(+Q) from γ(θ); Δπ=no from level scheme. δ: 0.0 3 or >1.4 in (p,p'γ), +0.41 14 or +1.4 3 in (γ,γ'), +0.06 +9–8 or +3.1 +13–8 in (α,pγ). B(M1)(W.u.)=0.042 8 if M1, B(E2)(W.u.)=18.1 +34–32 if E2. α(K)=0.00116 33; α(L)=1.16×10 ⁻⁴ 34; α(M)=1.6×10 ⁻⁵ 5 α(N)=4.9×10 ⁻⁷ 13 E _γ : from ⁶³ Zn ε+β ⁺ decay. Other: 515.0 14 from (n,n'γ). I _γ : weighted average of 76.1 13 from (p,γ):E=res and 61 10 from (p,p'γ). Others: 170 85 from (n,n'γ), 19 7 from ⁶³ Zn ε+β ⁺ decay. 147 10 from (α,pγ) are discrepant.	From ENS
		1392.37 10	100.0 <i>11</i>	669.724	1/2-	(M1+E2)		0.000167 <i>12</i>	Mult.: D+Q from $\gamma(\theta)$ in (α,pγ), if J=3/2; Δπ=no from level scheme. δ: -0.10 +8-10 from (α,pγ) if J(2062)=3/2. Other: -3.2 +10 J=3/2 also from (α,pγ) ruled out by RUL. B(M1)(W.u.)=0.27 +15-7 if M1. B(E2)(W.u.)=1.7×10 ³ +10-5 exceeds RUL=300 if E2. α(K)=0.000110 5; α(L)=1.08×10 ⁻⁵ 5; α(M)=1.52×10 ⁻⁶ 7 α(N)=4.66×10 ⁻⁸ 21; α(IPF)=4.5×10 ⁻⁵ 6 E _γ : weighted average of 1392.51 14 from ⁶³ Zn ε+β ⁺ decay and 1392.3 1 from (n,n'γ). Other: 1392.3 12 from (α,pγ). I _γ : from (p,γ):E=res. Others: 100 13 from ⁶³ Zn ε+β ⁺ decay, 1 from (α,pγ), 100.0 11 from (p,γ):E=res, 100 14 from (n,n'γ), and 100 7 from (p,p'γ).	9
		2062.1 2	33.3 17	0.0	3/2-	(M1+E2)	-0.26 +16-18	0.000345 8	Mult.: D+Q from γ(θ) in (α,pγ), if J=3/2; Δπ=no from level scheme. δ: +0.27 +16-15 or -3.7 +12-25 in (α,pγ) and +0.49 +∞-19 (p,p'γ), if J=3/2. B(M1)(W.u.)=0.018 +10-5 if M1, B(E2)(W.u.)=16 +9-5 if E2. α(K)=5.14×10 ⁻⁵ 8; α(L)=5.04×10 ⁻⁶ 7; α(M)=7.09×10 ⁻⁷ 10 α(N)=2.185×10 ⁻⁸ 32; α(IPF)=0.000287 7 B(M1)(W.u.)=0.0017 +9-5; B(E2)(W.u.)=0.05 +9-4 E _γ : from (n,n'γ). Other: 2062.1 3 from ⁶³ Zn ε+β ⁺ decay.	.5

	Adopted Levels, Gammas (continued)													
							γ ⁽⁶³ Cu) (continu	ued)						
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	a^{\dagger}	Comments					
									I _γ : weighted average of 29.5 29 from ⁶³ Zn ε + β ⁺ decay, 33.3 11 from (p,γ):E=res, and 41 4 from (p,p'γ). Others: 31 5 from (α ,pγ), 75 27 from (n,n'γ), and 41 4 from (p,p'γ). Mult.: D+Q from $\gamma(\theta)$ in (α ,pγ), if J=3/2; $\Delta\pi$ =no from level scheme. δ : -0.26 +16-18 from (α ,pγ) if J=3/2. Other: <-7 or >7 also from (α pγ) for I=3/2 ruled out by RUL.					
2081.32	5/2-	534.0 6	23.4 23	1547.109	3/2-	M1+E2	+0.23 +13-11	0.00088 4						
		754.2 1	70 7	1326.014	7/2-	(M1(+E2))	0.4 +5-4	0.00042 5	I _γ : weighted average of 33 11 from ⁶³ Zn ε+β ⁺ decay, 25.6 26 from (p,γ):E=res, and 21.3 23 from (p,p'γ). Other: 79 29 from (n,n'γ) is discrepant. $\alpha(K)=0.00038 4; \alpha(L)=3.7\times10^{-5} 4; \alpha(M)=5.3\times10^{-6} 6$ $\alpha(N)=1.61\times10^{-7} 17$ B(M1)(W.u.)=0.10 6; B(E2)(W.u.)<213 E _γ : other: 754.6 7 from ⁶³ Zn ε+β ⁺ decay.					
		1119.0 <i>18</i>	55 6	962.145	5/2-	M1+E2	-0.41 +31-46		I _γ : weighted average of 50 28 from ⁶³ Zn ε+β ⁺ decay, 69 5 from (p,γ):E=res, 54 8 from (n,n'γ), and 86 7 from (p,p'γ). Mult.: D(+Q) from (p,p'γ); Δπ=no from level scheme. δ: from (p,p'γ). Others: +0.28 8 or +6 +6-3 in (α,pγ). B(M1)(W.u.)=0.024 +6-10; B(E2)(W.u.)=6 +11-5 I _γ : unweighted average of 61.5 26 from (p,γ):E=res, and 49 4 from (p,p'γ). Other: 167 30 from (n,n'γ) for a doublet. Mult.: D+Q from γ(θ) in (p,p'γ); E1+M2 ruled out by RUL.					
		2081.5 <i>3</i>	100.0 26	0.0	3/2-	(M1(+E2))		0.000379 <i>31</i>	RUL. $\alpha(K)=5.15\times10^{-5} \ 13; \ \alpha(L)=5.05\times10^{-6} \ 13; \ \alpha(M)=7.10\times10^{-7} \ 18 \ \alpha(N)=2.19\times10^{-8} \ 5; \ \alpha(IPF)=0.000322 \ 30$					

						Adopted	Levels, Gammas (continued)	
							$\gamma(^{63}Cu)$ (continued	<u>d)</u>	
E _i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{\ddagger}$	I_{γ} ‡	E_{f}	\mathbf{J}_f^{π}	Mult. [#]	δ#	$lpha^{\dagger}$	Comments
	_				, , , , , , , , , , , , , , , , , , ,				E _γ : from ⁶³ Zn ε+β ⁺ decay. Other: 2081.4 <i>3</i> from (n,n'γ). I _γ : from (p,γ):E=res. Others: 100 <i>11</i> from ⁶³ Zn ε+β ⁺ decay, 100 5 from (n,n'γ), and 100 6 from (p,p'γ). Mult.: D(+Q) from (p,p'γ); $\Delta \pi$ =no from level scheme. δ : +0.03 + <i>11</i> - <i>10</i> or -3.7 + <i>10</i> -34 from (p,p'γ). B(M1)(W.u.)=0.0080 + <i>16</i> - <i>14</i> if M1, B(E2)(W.u.)=3.2 6 if E2.
2092.48	7/2-	231.1 [@] 5	1.5 [@] 6	1861.34	7/2-	[M1]		0.00613 9	$\alpha(K)=0.00549 \ 8; \ \alpha(L)=0.000555 \ 8; \ \alpha(M)=7.81\times10^{-5} \ 12$ $\alpha(N)=2.356\times10^{-6} \ 35$ $B(M1)(W.u.)=0.060 \ +35-26$ $E_{\gamma}J_{\gamma}$: other: 231.0 12 with $J_{\gamma}=12.7$ from $(n,n'\gamma)$.
		680.2 [@] 5	6.4 [@] 8	1412.124	5/2-	[M1,E2]		0.00061 11	$\alpha(K)=0.00055 \ 10; \ \alpha(L)=5.5\times10^{-5} \ 10; \ \alpha(M)=7.7\times10^{-6} \ 15 \ \alpha(N)=2.3\times10^{-7} \ 4 \ B(M1)(W.u.)=0.0100 \ +41-24 \ if \ M1, \ B(E2)(W.u.)=37 \ +15-9 \ if \ E2.$
		765.2 1	76 8	1326.014	7/2-	(M1(+E2))	-0.2 5	0.00039 4	a(K) = 0.0035 4; α(L) = 3.5 × 10-5 4; α(M) = 4.9 × 10-6 5 α(K) = 1.51 × 10-7 15 B(M1)(W.u.) = 0.080 + 45 - 41; B(E2)(W.u.) < 122 Eγ: weighted average of 765.7 5 from 63Zn ε+β+ decay, 765.0 1 from (16O, αpγ), 765.2 3 from (18O, αp2nγ), 765.5 2 from (α, pnγ), and 765.5 2 from (d, 3Heγ). Others: 764.9 6 from (α, pγ) and 765.0 16 from (n, n'γ). Iγ: unweighted average of 53 20 from 63Zn ε+β+ decay, 76.9 19 from (p, γ):E=res, 82.7 23 from (n, n'γ), 90 4 from (p, p'γ). Others: 110 8 from (d, 3Heγ) and 12.4 8 from (18O, αp2nγ) are discrepant. Mult.: D(+Q) from γ(θ) in (α, pnγ); Δπ=no from level scheme. δ: from (α, pnγ). Others: -0.10 19 or +1.3 +7-5 in (p, p'γ); -0.25 +17-24 or +1.3 +7-5 in (α, pγ).
		1130.08 12	100.0 <i>19</i>	962.145 :	5/2-	M1+E2	-1.06 +23-22	0.000190 4	a(K) = 0.00169 4;

From ENSDF

 $^{63}_{29}$ Cu₃₄-25

 $^{63}_{29}\mathrm{Cu}_{34}$ -25

	Adopted Levels, Gammas (continued)													
							γ(⁶³ Ct) (continued)						
E _i (level)	\mathbf{J}_i^π	E _γ ‡	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments					
2092.48	7/2-	2093.0 <i>1</i>	19.5 <i>17</i>	0.0	3/2-	E2		0.000415 6	⁶³ Zn ε+β ⁺ decay and 100 <i>14</i> from (n,n'γ). Mult.: D+Q from γ(θ) in (α,pγ) and (α,pnγ); E1+M2 ruled out by RUL. δ: from (α,pγ). Other: -1.0 <i>4</i> in (α,pnγ). B(E2)(W.u.)=0.41 + <i>16</i> - <i>10</i> $\alpha(K)=5.20\times10^{-5}$ 7; $\alpha(L)=5.10\times10^{-6}$ 7; $\alpha(M)=7.18\times10^{-7}$ <i>10</i> $\alpha(N)=2.207\times10^{-8}$ 31; $\alpha(IPF)=0.000357$ 5 E _γ : weighted average of 2092.6 5 from ⁶³ Zn ε+β ⁺ decay, 2092.5 5 from (¹⁸ O en ² ne) 2003 1 <i>l</i> from (n n'α) and 2002 6 5 from					
									(d, ³ He γ). I _{γ} : weighted average of 23 7 from ⁶³ Zn ε + β ⁺ decay, 17.3 <i>19</i> from (p, γ):E=res, 20.4 <i>17</i> from (p, $\gamma'\gamma$), and 34 8 from (d, ³ He γ) Others: 7.1 4 from (¹⁸ O, α p2n γ) and 11.4 <i>14</i> from (n,n' γ) are discrepant. Mult.: Q(+O) with δ =+10 <i>22</i> ; M2,O components ruled out by RUL.					
2207.84	9/2-	881.0 <i>1</i>	100 3	1326.014	7/2-	M1+E2	-0.28 5	0.000295 5						
		1245.4 2	71.8 <i>31</i>	962.145	5/2-	E2		0.0001783 25	δ: from (α,pγ). Other: -0.24 +6-8 or -2.0 4 in (p,p'γ). B(E2)(W.u.)=17.1 +34-40 α(K)=0.0001453 20; α(L)=1.435×10 ⁻⁵ 20; α(M)=2.017×10 ⁻⁶ 28 α(N)=6.16×10 ⁻⁸ 9; α(IPF)=1.661×10 ⁻⁵ 24 E _γ : unweighted average of 1246.0 <i>I</i> from (¹⁶ O,αpγ), 1245.5 <i>I</i> from (¹⁸ O,αp2nγ), 1245.0 <i>I</i> 8 from (n,n'γ), and 1245.2 2 from (p,p'γ). I _γ : weighted average of 69.5 3 <i>I</i> from (α,pγ) and 74.8 35 from (p,p'γ). Mult.: Q(+O) with δ=-0.01 +4-5 in (p,p'γ) and -0.05 5 in (α,pγ), M2 and O components ruled out by RUL.					
2274.7	(9/2 ⁻)	948.2 5	100	1326.014	7/2-	D+Q			E_{γ} ,Mult.: from (¹⁸ O, α p2n γ).					

L.

						Adopted	Levels	, Gammas (cont	inued)
							γ(⁶³ Cι	a) (continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments
2336.48	5/2-	475.0 2	74	1861.34	7/2-	[M1]	_	1.11×10 ⁻³ 2	$\alpha(K)=0.000992 \ 14; \ \alpha(L)=9.88\times10^{-5} \ 14; \ \alpha(M)=1.390\times10^{-5} \ 20$
									α (N)=4.24×10 ⁻⁷ 6 B(M1)(W.u.)=0.027 +16-14
		923.6 <i>3</i>	11.4 <i>14</i>	1412.124	5/2-	[M1,E2]		0.000293 31	E _γ : from (n,n'γ). Other: 475.8 9 from ⁶³ Zn ε +β ⁺ decay. α (K)=0.000263 28; α (L)=2.61×10 ⁻⁵ 28; α (M)=3.7×10 ⁻⁶ 4 α (N)=1.12×10 ⁻⁷ 11
									E_{γ} : weighted average of 924.3 5 from ⁶³ Zn ε+β ⁺ decay and 923.5 2 from (n,n'γ).
									I _{γ} : from (p, γ):E=res. Others: 13.3 25 from ⁶³ Zn ε + β ⁺ decay, 12 4 from (α ,p γ), 11 4 from (n,n' γ), and 10.6 18 from (p,p' γ).
		1374.54 10	34 4	962.145	5/2-	(M1(+E2))		0.000166 12	B(M1)(W.u.)=0.0059 <i>16</i> if M1, B(E2)(W.u.)=11.9 <i>33</i> if E2. α (K)=0.000113 <i>5</i> ; α (L)=1.11×10 ⁻⁵ <i>5</i> ; α (M)=1.56×10 ⁻⁶ <i>8</i>
									$\alpha(N)=4.78 \times 10^{-6} 22; \ \alpha(IPF)=4.1 \times 10^{-5} 6$ $E_{\gamma}:$ weighted average of 1374.44 13 from ⁶³ Zn $\varepsilon + \beta^+$ decay and 1374.6 l from (n n'a)
									I _y : unweighted average of 43.6 31 from ⁶³ Zn ε + β ⁺ decay, 25 4 from (α ,p γ), 31.4 29 from (p , γ):E=res, 29 4 from (p , $n'\chi$) and 41 4 27 from (p , $n'\chi$)
									Mult.: D(+Q) from $\gamma(\theta)$; $\Delta \pi$ =no from level scheme. δ : +0.1 +5-3 or +1.4 +12-9 in (p,p' γ); -0.6 +3-4 or >+3 in
									(α,pγ). B(M1)(W.u.)=0.0053 <i>14</i> if M1, B(E2)(W.u.)=4.9 <i>13</i> if E2.
		1667.2 6	1.8 7	669.724	1/2-	[E2]		0.0002452 34	$\alpha(K) = 7.97 \times 10^{-5} \ 11; \ \alpha(L) = 7.84 \times 10^{-6} \ 11; \ \alpha(M) = 1.102 \times 10^{-6} \ 15$
									$\alpha(N)=3.38\times10^{-8}$ 5; $\alpha(IPF)=0.0001565$ 22 B(E2)(W.u.)=0.099 45
		2336.5 1	100.0 14	0.0	3/2-	(M1(+E2))		0.00049 4	E _γ ,I _γ : from ⁶³ Zn ε+β ⁺ decay. $\alpha(K)=4.21\times10^{-5}$ 9; $\alpha(L)=4.12\times10^{-6}$ 9; $\alpha(M)=5.79\times10^{-7}$ 13
									$\alpha(N)=1.79 \times 10^{-6} 4$; $\alpha(IPF)=0.00044 4$ E _{γ} : from (n,n' γ). Others: 2336.6 2 from ⁶³ Zn $\varepsilon + \beta^+$ decay
									and 2336.2 20 from (d, ³ He γ). I _{γ} : from (p, γ):E=res. Others: 100 6 from ⁶³ Zn ε + β ⁺ decay,
									100 6 from $(\alpha, p\gamma)$, 100 4 from $(n, n'\gamma)$, and 100 4 from $(p, p'\gamma)$.
									Mult.: D(+Q) from $\gamma(\theta)$; $\Delta \pi$ =no from level scheme. δ : 0.00 9 or -3.6 +10-15 in (p,p' γ); +0.04 7 or -2.6 +8-12 in
									(α,pγ). B(M1)(W.u.)=0.0032 8 if M1, B(E2)(W.u.)=1.01 25 if E2.

					Ado	pted Levels, Gamma	s (continued)	
						γ (⁶³ Cu) (continu	ued)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\ddagger}$	I_{γ}^{\ddagger}	E_f J	\int_{f}^{π} Mult. [#]	ŧ δ [#]	α^{\dagger}	Comments
2404.77	7/2-	992.4 1	50 6	1412.124 5/	2 ⁻ M1+E2	-0.50 +12-20	0.000236 7	$ α(K)=0.000212 6; α(L)=2.09×10^{-5} 6; α(M)=2.94×10^{-6} 8 α(N)=9.01×10^{-8} 25 B(M1)(W.u.)=0.031 +7-10; B(E2)(W.u.)=14 +9-6 Iγ: others: 49 7 from (α,pγ) and 51 7 from (p,γ):E=res. Mult.,δ: D+Q and δ from (α,pγ); E1+M2 ruled out by RUL.$
		1077.7 1	73 5	1326.014 7/	2 ⁻ (M1(+E	2))	0.000208 16	α(K)=0.000187 14; α(L)=1.85×10-5 15; α(M)=2.60×10-6 20 α(N)=7.9×10-8 6 Eγ: weighted average of 1077.6 1 from (n,n'γ), 1077.8 2 from (p,p'γ), and 1077.8 4 from (d,3Heγ). Iγ: weighted average of 83 9 from (α,pγ), 81 7 from (p,γ):E=res, 68 6 from (n,n'γ), 68 5 from (p,p'γ). Other: 133 7 from (d,3Heγ). Mult: D(+Q) from γ(θ); Δπ=no from level scheme. δ: +0.07 +29-19 or +0.92 41 in (p,p'γ); -0.12 21 in (α,pγ). B(M1)(W.u.)=0.044 10 if M1, B(E2)(W.u.)=66 +14-15 if E2.
		1442.7 1	100 6	962.145 5/	2 ⁻ M1+E2		0.000172 <i>13</i>	α(K)=0.000102 4; α(L)=1.01×10-5 4; α(M)=1.42×10-6 6 α(N)=4.34×10-8 18; α(IPF)=5.9×10-5 8 Eγ: weighted average of 1442.8 1 from (n,n'γ), 1442.7 1 from (p,p'γ), and 1442.4 3 from (d,3Heγ). Iγ: from (p,p'γ). Others: 100 9 from (α,pγ), 100 9 from (p,γ):E=res, 100 18 from (n,n'γ), 100 6 from (d,3Heγ). Mult: D+Q from γ(θ); E1+M2 ruled out by RUL. δ: -0.24 6 or -2.0 +5-6 in (p,p'γ); -0.26 +6-8 or -1.3 +6n4(α,pγ). B(M1)(W.u)=0.025 6 if M1, B(E2)(W.u.)=21.0 +45-48 if E2
		2404.7 2	8.4 27	0.0 3/	2 ⁻ E2		0.000554 8	B(E2)(W.u.)=0.14 5 α (K)=4.07×10 ⁻⁵ 6; α (L)=3.99×10 ⁻⁶ 6; α (M)=5.61×10 ⁻⁷ 8 α (N)=1.727×10 ⁻⁸ 24; α (IPF)=0.000509 7 Mult.: O from $\gamma(\theta)$ in (p,p' γ): M2 ruled out by RUL.
2430.37		570.0 <i>1</i> 884.0 <i>1</i> 1467.6 <i>1</i> 2429.6 2	52 <i>10</i> 100 <i>23</i> 81 <i>29</i> <i>29 10</i>	1861.34 7/ 1547.109 3/ 962.145 5/ 0.0 3/	2- 2- 2- 2- 2-			
2497.26	(3/2)	1085.0 1	1.83 25	1412.124 5/	2-			I _{γ} : from (p, γ):E=res. Other: 30 7 from (n,n' γ) is discrepant.
		1535.0 2	2.92 25	962.145 5/	2-			I_{γ} : from (p,γ) :E=res. Other: 6.8 from $(n,n'\gamma)$ is discrepant.

From ENSDF

 $^{63}_{29}$ Cu₃₄-28

						Ado	pted Levels, Gar	nmas (continued)
							γ ⁽⁶³ Cu) (cc	ntinued)
E _i (level)	J_i^{π}	E _γ ‡	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{\dagger}	Comments
2497.26	(3/2)	1827.7 2	17.2 6	669.724	1/2-	D(+Q)		E _γ : weighted average of 1826.2 8 from ⁶³ Zn ε +β ⁺ decay and 1827.7 <i>I</i> from (n,n'γ). I _γ : weighted average of 23 7 from ⁶³ Zn ε +β ⁺ decay, 17.1 4 from (p,γ):E=res, 30 7 from (n,n'γ), and 20.1 24 from (p,p'γ).
		2497.2 1	100.0 4	0.0	3/2-	D(+Q)		$\begin{array}{l} \delta: -7.1 \le \delta \le +0.4 \text{ from } (p,p \ \gamma). \\ E_{\gamma}: \text{ from } (n,n'\gamma). \text{ Others: } 2497.5 \ 4 \text{ from } {}^{63}\text{Zn} \ \varepsilon + \beta^+ \text{ decay and } 2497.8 \\ 7 \text{ from } (d,{}^{3}\text{He}\gamma). \\ I_{\gamma}: \text{ from } (p,\gamma): E = \text{res. Others: } 100 \ 9 \text{ from } {}^{63}\text{Zn} \ \varepsilon + \beta^+ \text{ decay, } 100 \ 12 \\ \text{ from } (n, n'\alpha) = 0.24 \text{ from } (n, n'\alpha). \end{array}$
2503.50		1541.5 <i>1</i> 2503.4 <i>1</i>	100 <i>13</i> 100 <i>13</i>	962.145 0.0	5/2 ⁻ 3/2 ⁻			from (n,n γ), and 100.0 24 from (p,p γ). δ : -0.14 +43-51 or E2, (p,p'γ).
2505.08	9/2+	297.0 1	5.68 32	2207.84	9/2-	[E1]	2.16×10 ⁻³ 3	$\alpha(K)=0.001940\ 27;\ \alpha(L)=0.0001921\ 27;\ \alpha(M)=2.69\times10^{-5}\ 4$ $\alpha(N)=8.07\times10^{-7}\ 11$ B(E1)(W.u.)=2.34×10^{-4}\ +39-42 E _y : from (¹⁶ O, apy). Other: 297.3 5 from (¹⁸ O, ap2ny).
		413.4 <i>3</i>	74 8	2092.48	7/2-	E1	0.000874 <i>12</i>	<i>α</i> (K)=0.000785 <i>11</i> ; <i>α</i> (L)=7.76×10 ⁻⁵ <i>11</i> ; <i>α</i> (M)=1.090×10 ⁻⁵ <i>15</i> <i>α</i> (N)=3.29×10 ⁻⁷ 5 B(E1)(W.u.)=0.00113 + <i>19</i> −2 <i>1</i> E _γ : unweighted average of 413.0 <i>1</i> from (¹⁶ O, <i>α</i> pγ), 412.9 <i>1</i> from (¹⁸ O, <i>α</i> p2nγ), 414.3 <i>4</i> from (<i>α</i> ,pγ), 413.1 2 from (<i>α</i> ,pnγ), 414.0 <i>1</i> from (n,n'γ), and 412.8 <i>3</i> from (d ₃ ³ Heγ). I _γ : unweighted average of 79.8 <i>32</i> from (¹⁸ O, <i>α</i> p2nγ), 83 5 from (<i>α</i> ,pγ), 58 5 from (n,n'γ). Other: 111 8 from (d ₃ ³ Heγ). Mult : from <i>αα</i> (DCO) and <i>α</i> (lin pol) in (¹⁸ O, <i>α</i> p2nγ).
		553.0 <i>1</i> 644.5 <i>2</i>	5.6 100 <i>4</i>	1952.03 1861.34	7/2-	E1	0.000292 4	Mult.: from $\gamma\gamma$ (DCO) and γ (lin pol) in (¹⁸ O, α p2n γ), E_{γ} , I_{γ} : from (¹⁶ O, α p γ) only. B(E1)(W.u.)=4.0×10 ⁻⁴ 7 α (K)=0.000262 4; α (L)=2.59×10 ⁻⁵ 4; α (M)=3.63×10 ⁻⁶ 5 α (N)=1.105×10 ⁻⁷ 15 E_{γ} : unweighted average of 644.0 1 from (¹⁶ O, α p γ), 644.2 1 from (¹⁸ O, α p2n γ), 645.4 3 from (α ,p γ), 644.4 2 from (α ,pn γ), 645.0 1 from (n,n' γ), and 644.1 3 from (d, ³ He γ). I _{γ} : from (¹⁸ O, α p2n γ). Others: 100 5 from (α ,p γ), 100 10 from (n,n' γ), and 100 8 from (d, ³ He γ). Mult.: from γ (DCO) and γ (lin pol) in (¹⁸ O, α p2n γ)
		1178.7 2	66 <i>3</i>	1326.014	7/2-	E1	0.0001230 17	$\alpha(\text{K})=7.66\times10^{-5}$ 11; $\alpha(\text{L})=7.51\times10^{-6}$ 11; $\alpha(\text{M})=1.055\times10^{-6}$ 15 $\alpha(\text{N})=3.23\times10^{-8}$ 5; $\alpha(\text{IPF})=3.79\times10^{-5}$ 5

						Adopted	Levels, Gammas	s (continued)
						<u>2</u>	y(⁶³ Cu) (continu	ued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ} ‡	E_f	\mathbf{J}_f^{π}	Mult. [#]	$lpha^{\dagger}$	Comments
								B(E1)(W.u.)=4.4×10 ⁻⁵ +7-8 E _γ : unweighted average of 1179.0 <i>I</i> from (¹⁶ O,αpγ), 1178.3 <i>3</i> from (¹⁸ O,αp2nγ), 1178.9 <i>3</i> from (α,pγ), 1178.6 <i>2</i> from (α,pnγ), 1178.0 <i>I</i> from (n,n'γ), and 1179.1 <i>4</i> from (d, ³ Heγ). I _γ : weighted average of 67.5 25 from (α,pγ), 53 10 from (n,n'γ), and 60 <i>8</i> from (d, ³ Heγ). Other: 18.3 10 from (¹⁸ O,αp2nγ) is discrepant. Mult.: E1+M2 from γ(lin pol) in (α,pγ); D, ΔJ=1 from $\gamma\gamma(DCO)$ in (¹⁸ O αn2nγ)
2505.08	9/2+	1543.0 ^b 1	9.8 6	962.145	5/2-			E_{γ} : from (¹⁶ O,αpγ). Other: 1542.9 <i>3</i> from (¹⁸ O,αp2nγ). Mult.: Q from γγ(DCO) in (¹⁸ O,αp2nγ); M2 ruled out by RUL, but M2 from level scheme. This contradiction makes this γ questionable.
		2505.1 5	2.84 32	0.0	3/2-	[E3]	0.000420 6	$\alpha(K)=5.82 \times 10^{-5} \ 8; \ \alpha(L)=5.72 \times 10^{-6} \ 8; \ \alpha(M)=8.04 \times 10^{-7} \ 11$ $\alpha(N)=2.472 \times 10^{-8} \ 35; \ \alpha(IPF)=0.000355 \ 5$ B(E3)(W.u.)=60 12 F. L.: from (¹⁸ O \approx n^2n\approx)
2511.903	(3/2)+	1099.0 ^b 2	36 4	1412.124	5/2-	[E1]		B(E1)(W.u.)=5.4×10 ⁻⁴ 14 E _{γ} ,I _{γ} : large intensity from (n,n' γ), but not seen in (p, γ):E=res, which makes this placement is questionable
		1840.0 2	7.07 22	669.724	1/2-	[E1]	0.000559 8	$\alpha(K)=3.66\times10^{-5} 5; \ \alpha(L)=3.58\times10^{-6} 5; \ \alpha(M)=5.03\times10^{-7} 7$ $\alpha(N)=1.547\times10^{-8} 22; \ \alpha(IPF)=0.000519 7$ B(E1)(W.u.)=2.3×10^{-5} 6 L : from (p.a)/F=res_Other: 30 4 from (p.p/a) is discrepant
		2512.0 1	100.00 22	0.0	3/2-	[E1]	0.000993 14	$\alpha(K)=2.328 \times 10^{-5} 33; \ \alpha(L)=2.272 \times 10^{-6} 32; \ \alpha(M)=3.19 \times 10^{-7} 4$ $\alpha(N)=9.84 \times 10^{-9} 14; \ \alpha(IPF)=0.000968 14$ B(E1)(W.u.)=1.26×10 ⁻⁴ 31 E _{\gamma} : from (n,n'\gamma). Others: 2512.2 5 from ⁶³ Zn $\varepsilon + \beta^+$ decay and 2514.9 26 from (d, ³ Heγ).
2535.83	5/2-	443.07 20	16.1 <i>32</i>	2092.48	7/2-	[M1]	1.30×10 ⁻³ 2	
		675.0 2	13.9 30	1861.34	7/2-	[M1,E2]	0.00062 12	$\alpha(K)=0.00056 \ 11; \ \alpha(L)=5.6\times10^{-5} \ 11; \ \alpha(M)=7.9\times10^{-6} \ 15$

I.

					A	Adopted Levels,	Gammas (continued)
						γ (⁶³ Cu)	(continued)
E _i (level)	E _γ ‡	I _γ ‡	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{\dagger}	Comments
							$\alpha(N)=2.4\times10^{-7} 4$
							E_{γ} : from (n,n' γ). Other: 675.0 6 from ⁶³ Zn $\varepsilon + \beta^+$ decay.
							I _{γ} : weighted average of 13.3 30 from ⁶³ Zn $\varepsilon + \beta^+$ decay and 14.6 32 from (n,n' γ).
							B(M1)(W.u.)=0.0118 46 if M1, B(E2)(W.u.)=45 18 if E2.
2535.83	989.6 7	3.5 10	1547.109	3/2-	[M1,E2]	0.000251 23	$\alpha(K)=0.000225\ 21;\ \alpha(L)=2.23\times10^{-5}\ 21;\ \alpha(M)=3.13\times10^{-6}\ 29$
							$\alpha(N) = 9.6 \times 10^{-6} 8$
							E_{γ}, I_{γ} : from ⁶⁵ Zn $\varepsilon + \beta^+$ decay.
	1100 70 7	100 5	1410 104	5/0-		0.000102.14	$B(M1)(W.u.)=9.4\times10^{-7}+42-40$ if M1, $B(E2)(W.u.)=1.77$ if E2.
	1123.727	100.5	1412.124	5/2	[M1,E2]	0.000192 14	$\alpha(\mathbf{K}) = 0.0001/11/2; \ \alpha(\mathbf{L}) = 1.09 \times 10^{-5} 1/2; \ \alpha(\mathbf{M}) = 2.3/\times 10^{-5} 1/2$
							$\alpha(N) = 7.5 \times 10^{-5}$; $\alpha(PF) = 1.41 \times 10^{-5}$ 25
							$(n,n'\gamma)$.
							I _y : from (p,p'y). Others: 100 11 from ⁶³ Zn $\varepsilon + \beta^+$ decay and 100 22 from
							$(\mathbf{n},\mathbf{n}'\boldsymbol{\gamma}).$
							B(M1)(W.u.)=0.018 6 if M1, B(E2)(W.u.)=25 8 if E2.
	1208.7 2	11.4 22	1326.014	7/2-	[M1,E2]	0.000172 11	$\alpha(K)=0.000146\ 9;\ \alpha(L)=1.44\times10^{-5}\ 9;\ \alpha(M)=2.03\times10^{-6}\ 13$
							$\alpha(N) = 6.2 \times 10^{-8} 4; \ \alpha(IPF) = 8.7 \times 10^{-6} 14$
							E_{γ} : from $(n,n'\gamma)$. Other: 1208.8 3 from ⁶³ Zn $\varepsilon + \beta^+$ decay.
							I_{γ} : from ^{0.5} Zn $\varepsilon + \beta^{+}$ decay. Other: 34 6 from $(n, n'\gamma)$ is discrepant.
	1573 30 20	14 1 15	062 145	5/2-	[M1 E2]	0.000100.16	D(M1)(W.u.)=0.00170 II M1, D(E2)(W.u.)=2.00 II E2. $\alpha(K)=8.64\times10^{-5}31$; $\alpha(I)=8.40\times10^{-6}32$; $\alpha(M)=1.10\times10^{-6}4$
	1373.39 29	14.1 15	902.145	5/2	[1011,122]	0.000199 10	$\alpha(\mathbf{N}) = 3.67 \times 10^{-8}$ 13: $\alpha(\mathbf{D}E) = 0.000103$ 13
							E_{γ} : unweighted average of 1573.67 20 from ⁶³ Zn $\varepsilon + \beta^+$ decay and 1573.1 2 from $(n,n'\gamma)$.
							I _{γ} : from ⁶³ Zn $\varepsilon + \beta^+$ decay. Others: 36 4 from (n,n' γ), and 23.7 32 from (p,p' γ) are discrepant.
							$B(M1)(W.u.)=9.4\times10^{-4}$ 32 if M1, $B(E2)(W.u.)=0.66$ 23 if E2.
	1865.9 2	25 4	669.724	$1/2^{-}$	[E2]	0.000319 4	$\alpha(K)=6.43\times10^{-5}$ 9; $\alpha(L)=6.31\times10^{-6}$ 9; $\alpha(M)=8.87\times10^{-7}$ 12
							α (N)=2.73×10 ⁻⁸ 4; α (IPF)=0.0002470 35 B(E2)(W.u.)=0.50 18
							E_{γ} : weighted average of 1865.7 3 from ⁶³ Zn $\varepsilon + \beta^+$ decay and 1866.0 2 from $(n,n'\gamma)$.
							I _{γ} : weighted average of 22 4 from ⁶³ Zn ε + β ⁺ decay and 28 4 from (n,n' γ).
	2535.6 5	72 6	0.0	3/2-	(M1(+E2))	0.00057 4	$\alpha(K)=3.66\times10^{-5}$ 8; $\alpha(L)=3.58\times10^{-6}$ 8; $\alpha(M)=5.04\times10^{-7}$ 11
							$\alpha(N)=1.553\times10^{-8} 33; \alpha(IPF)=0.00053 4$
							E _γ : unweighted average of 2536.0 2 from ⁶³ Zn ε +β ⁺ decay and 2535.1 <i>l</i> from (n,n'γ).
							I _{γ} : unweighted average of 61 4 from ⁶³ Zn $\varepsilon + \beta^+$ decay, 79 11 from (n,n' γ), and

						Adopted Lev	els, Gammas (cor	ntinued)	
						$\gamma(6)$	³ Cu) (continued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ#	α^{\dagger}	Comments
2547.55	9/2-	686.5 <i>1</i>	100 12	1861.34	7/2-	(M1(+E2))	-0.18 +20-40	0.00050 5	76 4 from (p,p'γ). Mult.: D(+Q) from $\gamma(\theta)$ in (p,p'γ); $\Delta \pi$ =no from level scheme. δ: 0.0 +3-5 or -3 +2-26 from (p,p'γ). B(M1)(W.u.)=0.00115 38 if M1, B(E2)(W.u.)=0.31 10 if E2. $\alpha(K)=0.00045 4$; $\alpha(L)=4.4\times10^{-5} 4$; $\alpha(M)=6.2\times10^{-6} 6$ $\alpha(N)=1.90\times10^{-7} 18$ E _γ : weighted average of 686.3 2 from (α ,pn γ) and 686.6 1 from (n,n' γ). Mult.: D(+Q) from $\gamma(\theta)$ in (α ,pn γ); $\Delta \pi$ =no from lavel scheme.
		1220.2 2	18 6	1326.014	7/2-	[M1,E2]		0.000170 11	δ: from (α, pnγ). $ α(K)=0.000144 9; α(L)=1.42×10^{-5} 9; $ $ α(M)=1.99×10^{-6} 12 $
		1585.4 <i>1</i>	26 6	962.145	5/2-	[E2]		0.0002190 <i>31</i>	$\alpha(N)=6.10\times10^{-8} 35; \ \alpha(IPF)=1.03\times10^{-5} 17$ $\alpha(K)=8.80\times10^{-5} 12; \ \alpha(L)=8.66\times10^{-6} 12;$ $\alpha(M)=1.217\times10^{-6} 17$ $\alpha(N)=3.73\times10^{-8} 5; \ \alpha(IPF)=0.0001211 17$
2617.03 2630.96	1/2- 3/2-	526.0 <i>1</i> 1291.0 <i>1</i> 1668 9 <i>1</i>	88 100 100 <i>12</i>	2092.48 1326.014 962.145	7/2 ⁻ 7/2 ⁻ 5/2 ⁻				E_{γ} : other: 1585.4 2 from (α,pnγ). E_{γ},I_{γ} : from (¹⁶ O,αpγ). E_{γ},I_{γ} : from (¹⁶ O,αpγ).
2630.90	5/2-7/2-	2630.3 <i>I</i>	26 <i>4</i>	0.0	$3/2^{-}$ $3/2^{-}$	IM1 E21		0.00040.5	$a(t) = 0.00026$ 5. $a(t) = 2.5 \times 10^{-5}$ 5.
2072.31	5/2 ,1/2	1346.4 ^b 2	170 6	1326.014	7/2 ⁻	[M1,E2]		0.00040 3	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00365; \ \alpha(\mathbf{L}) = 3.3 \times 10^{-5} \text{ s}; \\ &\alpha(\mathbf{M}) = 5.0 \times 10^{-6} \text{ 7} \\ &\alpha(\mathbf{N}) = 1.51 \times 10^{-7} 20 \\ & \mathbf{E}_{\gamma}: \text{ from } (\mathbf{n}, \mathbf{n}' \gamma). \text{ Other: } 811.6 3 \text{ from } \\ & (\mathbf{d}, {}^{3}\text{He} \gamma). \\ & \mathbf{I}_{\gamma}: (\mathbf{d}, {}^{3}\text{He} \gamma). \text{ Other: } 100 7 \text{ from } (\mathbf{n}, \mathbf{n}' \gamma). \\ & \mathbf{B}(\mathbf{M}1)(\mathbf{W}.\mathbf{u}.) = 0.084 + 37 - 22 \text{ if } \mathbf{M}1, \\ & \mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) = 2.2 \times 10^{2} + 10 - 6 \text{ if } \mathbf{E}2. \\ & \mathbf{E}_{\gamma}, \mathbf{I}_{\gamma}: \text{ from } (\mathbf{d}, {}^{3}\text{He} \gamma) \text{ only.} \end{aligned}$
2677.17	11/2-	2673.6 ^b 1 469.0 3	472 52 41.9 29	0.0 2207.84	3/2 ⁻ 9/2 ⁻	M1(+E2)	+0.01 3	1.14×10 ⁻³ 2	E _γ ,I _γ : from (n,n'γ) only. B(M1)(W.u.)=0.103 +44-27; B(E2)(W.u.)<1.8 α (K)=0.001021 14; α (L)=0.0001018 14; α (M)=1.431×10 ⁻⁵ 20

 $^{63}_{29}\mathrm{Cu}_{34}$ -32

Т

From ENSDF

					Ado	opted Levels	s, Gammas (cont	inued)
						γ (⁶³ C)	u) (continued)	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α^{\dagger}	Comments
2677.17	11/2-	1350.1 <i>1</i>	100 3	1326.014	7/2-	E2	0.0001764 25	$\begin{array}{l} \alpha(\mathrm{N})=4.36\times10^{-7}\ 6\\ \mathrm{E}_{\gamma}: \ \text{unweighted average of } 468.0\ 1\ \text{from }(^{16}\mathrm{O},\alpha\mathrm{p}\gamma),\ 469.4\ 3\ \text{from }(^{18}\mathrm{O},\alpha\mathrm{p}2\mathrm{n}\gamma),\ 469.2\ 4\ \text{from }(\alpha,\mathrm{p}\gamma),\ 469.4\ 2\ \text{from }(\alpha,\mathrm{p}n\gamma),\ \mathrm{and } 469.0\ 1\ \text{from }(\mathrm{n},\mathrm{n}'\gamma).\\ \mathrm{I}_{\gamma}: \ \text{weighted average of } 42.9\ 29\ \text{from }(\alpha,\mathrm{p}\gamma),\ \mathrm{and } 34\ 8\ \text{from }(\mathrm{n},\mathrm{n}'\gamma).\\ \mathrm{Mult.}_{,\delta}:\ \text{from }\gamma(\theta)\ \mathrm{and }\gamma(\mathrm{lin \ pol})\ \mathrm{in }(\alpha,\mathrm{p}\gamma),\ \mathrm{other:}\ \delta(\mathrm{Q}/\mathrm{D})=-0.07\\ +10-30\ \text{from }(\alpha,\mathrm{p}n\gamma).\\ \mathrm{B}(\mathrm{E2})(\mathrm{W.u.})=9.8\ +32-20\\ \alpha(\mathrm{K})=0.0001222\ 17;\ \alpha(\mathrm{L})=1.205\times10^{-5}\ 17;\ \alpha(\mathrm{M})=1.694\times10^{-6}\ 24\\ \alpha(\mathrm{N})=5.18\times10^{-8}\ 7;\ \alpha(\mathrm{IPF})=4.04\times10^{-5}\ 6\\ \mathrm{E}_{\gamma}:\ \text{weighted average of }1350.0\ 1\ \text{from }(^{16}\mathrm{O},\alpha\mathrm{p}\gamma),\ 1350.3\ 3\ \text{from }12\\ \end{array}$
2678.07	(5/2 ⁻ ,7/2 ⁻)	1131.0 <i>1</i>	100 27	1547.109	3/2-			$({}^{18}\text{O},\alpha\text{p}2\text{n}\gamma)$, 1350.1 4 from $(\alpha,\text{p}\gamma)$, 1350.7 2 from $(\alpha,\text{pn}\gamma)$ and 1350.0 <i>I</i> from $(n,n'\gamma)$. I _{γ} : from $(\alpha,\text{p}\gamma)$. Other: 100 24 from $(n,n'\gamma)$. Mult.: from $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in $(\alpha,\text{p}\gamma)$.
2682.45	(1/2 ⁻ ,3/2 ⁻)	1716.8 <i>1</i> 2012.0 <i>1</i> 2682 5 <i>1</i>	59 <i>14</i> 100 <i>27</i> 59 <i>2</i> 7	962.145 669.724	$5/2^{-}$ $1/2^{-}$ $3/2^{-}$			
2696.69	1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻	685.6 2	8.2 12	2012.274	$3/2^{-}$	[M1,E2]	0.00060 11	α (K)=0.00054 <i>10</i> ; α (L)=5.4×10 ⁻⁵ <i>10</i> ; α (M)=7.5×10 ⁻⁶ <i>14</i> α (N)=2.3×10 ⁻⁷ <i>4</i>
		1148.3 <i>13</i>	34.3 17	1547.109	3/2-	[M1,E2]	0.000184 <i>13</i>	E _γ : from (n,n'γ). Other: 685.5 6 from ⁶³ Zn ε+β ⁺ decay. I _γ : weighted average of 34 27 from ⁶³ Zn ε+β ⁺ decay, 8.0 11 from (p,γ):E=res, and 23 12 from (n,n'γ). B(M1)(W.u.)=0.015 6 if M1, B(E2)(W.u.)=53 +22-20 if E2. α (K)=0.000163 11; α (L)=1.61×10 ⁻⁵ 11; α (M)=2.26×10 ⁻⁶ 16 α (N)=6.9×10 ⁻⁸ 5: α (IPE)=2.6×10 ⁻⁶ 5
		2026 5 1	100.0.22	669.724	1/2-	[M1.E2]	0.000356.30	
		2696.5 3	72.6 22	0.0	3/2-	[M1.E2]	0.00064 4	$\begin{aligned} \alpha(N) &= 2.29 \times 10^{-8} \ 6; \ \alpha(IPF) &= 0.000296 \ 28 \\ E_{\gamma}: \ from \ (n,n'\gamma). \ Other: \ 2026.9 \ 3 \ from \ ^{63}Zn \ \varepsilon + \beta^+ \ decay. \\ I_{\gamma}: \ from \ (p,\gamma): E=res. \ Others: \ 100 \ 7 \ from \ ^{63}Zn \ \varepsilon + \beta^+ \ decay. \ 100 \\ 10 \ from \ (n,n'\gamma), \ and \ 100 \ 10 \ from \ (p,p'\gamma). \\ B(M1)(W.u.) &= 0.0068 \ + 27 - 24 \ if \ M1, \ B(E2)(W.u.) &= 2.9 \ + 11 - 10 \ if \ E2. \\ \alpha(K) &= 3.30 \times 10^{-5} \ 7; \ \alpha(L) &= 3.23 \times 10^{-6} \ 7; \ \alpha(M) &= 4.54 \times 10^{-7} \ 10 \end{aligned}$

From ENSDF

 $^{63}_{29}$ Cu₃₄-33

 $^{63}_{29}$ Cu₃₄-33

L

						Adopted I	evels, Gammas	(continued)
						2	(⁶³ Cu) (continue	ed)
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\ddagger}	Iγ [‡]	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{\dagger}	Comments
								E _γ : weighted average of 2696.7 2 from ⁶³ Zn ε +β ⁺ decay and 2696.2 2 from (n,n'γ).
2717.04	3/2 ⁻ ,5/2 ⁻	624.4 <i>1</i>	35 8	2092.48	7/2-	[M1,E2]	0.00076 16	I _γ : weighted average of 66 7 from ⁶³ Zn ε+β ⁺ decay, 73.9 22 from (p,γ):E=res, 62 7 from (n,n'γ), and 77 8 from (p,p'γ). B(M1)(W.u.)=0.0021 +8-7 if M1, B(E2)(W.u.)=0.50 +20-17 if E2. α (K)=0.00069 15; α (L)=6.8×10 ⁻⁵ 15; α (M)=9.6×10 ⁻⁶ 21
								$\alpha(N)=2.9\times10^{-7} 6$ E _{γ} : from (n,n' γ). Other: 624.3 <i>3</i> from ⁶³ Zn ε + β ⁺ decay. I _{γ} : from ⁶³ Zn ε + β ⁺ decay. Other: 217 24 from (n,n' γ) is discrepant. B(M1)(W,u)<0.1 if M1.
		1168.8 8	18 7	1547.109	3/2-	[M1,E2]	0.000179 12	$\alpha(K)=0.000157 \ 10; \ \alpha(L)=1.55\times10^{-5} \ 10; \ \alpha(M)=2.18\times10^{-6} \ 15$ $\alpha(N)=6.7\times10^{-8} \ 4; \ \alpha(IPF)=4.2\times10^{-6} \ 7$ $E_{\gamma}:$ unweighted average of 1169.6 3 from ⁶³ Zn $\varepsilon+\beta^+$ decay and 1168.0
		1389.68 8	100 7	1326.014	7/2-	[M1,E2]	0.000167 12	 2 from (n,n'γ). I_γ: weighted average of 31 10 from ⁶³Zn ε+β⁺ decay, 35 13 from (n,n'γ), and 12 5 from (p,p'γ). B(M1)(W.u.)<0.0093 if M1, B(E2)(W.u.)<12 if E2. α(K)=0.000110 5; α(L)=1.08×10⁻⁵ 5; α(M)=1.53×10⁻⁶ 7 α(N)=4.68×10⁻⁸ 21; α(IPF)=4.4×10⁻⁵ 6 E_γ: weighted average of 1389.66 8 from ⁶³Zn ε+β⁺ decay and 1389.7 1 from (n n'γ)
		1754.9 5	9.9 25	962.145	5/2-	[M1,E2]	0.000254 22	I _γ : from (p,p'γ). Others: 100 <i>14</i> from ⁶³ Zn ε+β ⁺ decay, 100 <i>24</i> from (n,n'γ). B(M1)(W.u.)<0.024 if M1, B(E2)(W.u.)<21 if E2. $\alpha(K)=7.03\times10^{-5}$ 21; $\alpha(L)=6.90\times10^{-6}$ 22; $\alpha(M)=9.70\times10^{-7}$ 30 $\alpha(N)=2.98\times10^{-8}$ 9; $\alpha(IPF)=0.000176$ 20 I _γ : weighted average of 10.8 25 from ⁶³ Zn ε+β ⁺ decay and 8.9 25 from (p,p'γ).
		2047.3 2	10 <i>3</i>	669.724	1/2-	[M1,E2]	0.000365 <i>30</i>	B(M1)(W.u.)<0.0014 if M1, B(E2)(W.u.)<0.8 if E2. $\alpha(K)=5.31\times10^{-5} \ 13; \ \alpha(L)=5.20\times10^{-6} \ 13; \ \alpha(M)=7.31\times10^{-7} \ 19$ $\alpha(N)=2.25\times10^{-8} \ 5; \ \alpha(IPF)=0.000306 \ 29$ E _{γ} : from (n,n' γ). Other: 2047.0 8 from ⁶³ Zn ε + β ⁺ decay. I _{γ} : weighted average of 13.1 23 from ⁶³ Zn ε + β ⁺ decay and 7.4 21 from
		2716.3 2	29.5 25	0.0	3/2-	[M1,E2]	0.00065 4	(p,p' γ). Other: 59 <i>13</i> from (n,n' γ), B(M1)(W.u.)<9.4×10 ⁻⁴ if M1, B(E2)(W.u.)<0.39 if E2. α (K)=3.26×10 ⁻⁵ 7; α (L)=3.19×10 ⁻⁶ 7; α (M)=4.49×10 ⁻⁷ 9 α (N)=1.384×10 ⁻⁸ 28; α (IPF)=0.00061 4 E γ : weighted average of 2717.0 4 from ⁶³ Zn ε + β ⁺ decay and 2716.3 1

Т

						Adopte	d Levels, Gamn	has (continued)
							γ (⁶³ Cu) (conti	nued)
E _i (level)	\mathbf{J}_i^{π}	E _γ ‡	I_{γ}^{\ddagger}	E_f	J_f^π	Mult. [#]	α^{\dagger}	Comments
								 from (n,n'γ). I_γ: weighted average of 29.2 25 from ⁶³Zn ε+β⁺ decay and 29.9 34 from (p,p'γ). Other: 124 24 from (n,n'γ). B(M1)(W.u.)<9.9×10⁻⁴ if M1, B(E2)(W.u.)<0.23 if E2.
2764.56	(2/2-)	903.0 <i>1</i> 1437.4 <i>1</i> 1802.4 <i>1</i>	100 24 88 24 ≈52	1861.34 1326.014 962.145	7/2 ⁻ 7/2 ⁻ 5/2 ⁻			
2775.84	(3/2)	1813.7 1 2107.0 1	100 <i>18</i> 39 <i>11</i>	962.145 669.724	5/2 1/2 ⁻			
2780.36	(3/2 ⁻)	244.3 5	35 6	2535.83	5/2-	[M1]	0.00534 8	α (K)=0.00479 7; α (L)=0.000483 7; α (M)=6.80×10 ⁻⁵ 10 α (N)=2.054×10 ⁻⁶ 31
								E_{γ},I_{γ} : from ⁶³ Zn $\varepsilon + \beta^+$ decay only. Mult.: for the adopted branching ratio and $T_{1/2}$, none of E1, M1, E2, or their mixture are allowed by RUL: B(M1)(W.u.)=5.5 +19–16 exceeds RUL=3 if M1; B(E2)(W.u.)=1.6×10 ⁵ +5-6 greatly exceeds RUL=300 if E2; B(E1)(W.u.)=0.106 +30-42 exceeds RUL=0.01. Further investigation is needed for the placement and branching ratio of this transition. If the placement is correct, it is mostly likely M1 based on RUL.
		718.17	6.5 5	2062.45	(3/2)-	[M1,E2]	0.00053 9	$\alpha(K)=0.00048 \ 8; \ \alpha(L)=4.8\times10^{-5} \ 8; \ \alpha(M)=6.7\times10^{-6} \ 12$ $\alpha(N)=2.03\times10^{-7} \ 33$ $E_{\gamma},I_{\gamma}: \ from \ (p,\gamma):E=res.$ B(M1)(Wu)=0.040 + 13-11 if M1. B(E2)(Wu)=134 +44-37 if E2.
		1233.1 7	22.2 18	1547.109	3/2-	[M1,E2]	0.000169 <i>11</i>	$\alpha(K)=0.000141 \ 8; \ \alpha(L)=1.39\times10^{-5} \ 8; \ \alpha(M)=1.95\times10^{-6} \ 12$ $\alpha(N)=5.97\times10^{-8} \ 34; \ \alpha(IPF)=1.23\times10^{-5} \ 20$ E _y : unweighted average of 1233.7 5 from ⁶³ Zn $\varepsilon+\beta^+$ decay and 1232.4 2 from (n,n' γ).
		2110.1 3	46.3 18	669.724	1/2-	[M1,E2]	0.000391 <i>32</i>	I _γ : weighted average of 16 6 from ⁶³ Zn ε+β ⁺ decay, 22.8 <i>18</i> from (p,γ):E=res, and 22 4 from (p,p'γ). B(M1)(W.u.)=0.027 +9-8 if M1, B(E2)(W.u.)=31 +10-9 if E2. α (K)=5.03×10 ⁻⁵ <i>12</i> ; α (L)=4.93×10 ⁻⁶ <i>12</i> ; α (M)=6.93×10 ⁻⁷ <i>17</i> α (N)=2.13×10 ⁻⁸ <i>5</i> ; α (IPF)=0.000335 <i>31</i>
		2780.1 2	100.0 <i>18</i>	0.0	3/2-	[M1,E2]	0.00067 5	E _γ : weighted average of 2110.7 5 from ⁶³ Zn ε+β ⁺ decay and 2110.0 2 from (n,n'γ). I _γ : weighted average of 42 8 from ⁶³ Zn ε+β ⁺ decay, 45.6 <i>18</i> from (p,γ):E=res, and 49.8 35 from (p,p'γ). B(M1)(W.u.)=0.0112 +36-30 if M1, B(E2)(W.u.)=4.4 +14-12 if E2. α (K)=3.14×10 ⁻⁵ 7; α (L)=3.07×10 ⁻⁶ 6; α (M)=4.32×10 ⁻⁷ 9 α (N)=1.332×10 ⁻⁸ 27; α (IPF)=0.00064 4 E _γ : weighted average of 2780.5 3 from ⁶³ Zn ε+β ⁺ decay and 2780.0 1 from (n,n'γ).

I.

						Adopted Le	evels, Gammas (c	ontinued)				
γ (⁶³ Cu) (continued)												
E _i (level)	\mathbf{J}_i^{π}	E_{γ} ‡	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	$lpha^\dagger$	Comments				
2808 14	3/2-	1261.0.2		1547 109	3/2-			I _γ : from (p,γ):E=res. Others: 100 8 from ⁶³ Zn ε+β ⁺ decay, 100 16 from (n,n'γ), and 100 4 from (p,p'γ). B(M1)(W.u.)=0.0106 +34-28 if M1, B(E2)(W.u.)=2.4 +8-6 if E2.				
2808.14	5/2	1480.1 <i>10</i>	42 4	1326.014	7/2 ⁻	[E2]	0.0001918 27	$\alpha(K)=0.0001010 \ 14; \ \alpha(L)=9.95\times10^{-6} \ 14; \ \alpha(M)=1.398\times10^{-6} \ 20$ $\alpha(N)=4.28\times10^{-8} \ 6; \ \alpha(IPF)=7.94\times10^{-5} \ 12$ B(E2)(W.u.)<7.8 E _{γ} : unweighted average of 1479.1 5 from ⁶³ Zn ε + β ⁺ decay and				
								1481.0 2 from $(n,n'\gamma)$. I_{γ} : weighted average of 37 4 from (p,γ) :E=res, 47 16 from $(n,n'\gamma)$, and 49 5 from $(p,p'\gamma)$. Other: 54 27 from ⁶³ Zn $\varepsilon + \beta^+$ decay.				
		2138.3 2	32	669.724	1/2-	[M1,E2]	0.000403 33	$\alpha(K)=4.91\times10^{-5}$ 12; $\alpha(L)=4.81\times10^{-6}$ 12; $\alpha(M)=6.77\times10^{-7}$ 17 $\alpha(N)=2.08\times10^{-8}$ 5; $\alpha(IPF)=0.000348$ 32 $B(M1)(W,u_{*})<0.0026$ if M1, $B(E2)(W,u_{*})<1.0$ if E2.				
		2807.4 7	100 4	0.0	3/2-	[M1,E2]	0.00069 5	$\alpha(K) = 3.09 \times 10^{-5} 6; \ \alpha(L) = 3.02 \times 10^{-6} 6; \ \alpha(M) = 4.25 \times 10^{-7} 9$ $\alpha(N) = 1.311 \times 10^{-8} 27; \ \alpha(IPF) = 0.00065 4$ $E_{\gamma}: \text{ unweighted average of } 2806.7 4 \text{ from } {}^{63}\text{Zn } \varepsilon + \beta^{+} \text{ decay and}$ $2808.1 1 \text{ from } (n, n'\gamma).$ $L_{\gamma}: \text{ from } (n, \gamma): \text{E} = \text{res. Others: } 100 19 \text{ from } {}^{63}\text{Zn} \varepsilon + \beta^{+} \text{ decay. } 100 32$				
2010.07		2010.0.2	100	0.0	2/2-			from $(n,n'\gamma)$, and 100 5 from $(p,p'\gamma)$. B(M1)(W.u.)<0.0033 if M1, B(E2)(W.u.)<0.71 if E2.				
2818.87 2832.95	(7/2 ⁻)	971.8 2	100 100.0 <i>13</i>	0.0 1861.34	3/2 7/2 ⁻	[M1,E2]	0.000261 25	$\alpha(K)=0.000235\ 22;\ \alpha(L)=2.32\times10^{-5}\ 23;\ \alpha(M)=3.27\times10^{-6}\ 32$ $\alpha(N)=1.00\times10^{-7}\ 9$ $E_{\gamma},I_{\gamma}:\ from\ (d,{}^{3}He\gamma)\ only.$				
		1505.6 <i>3</i>	31.6 <i>13</i>	1326.014	7/2-	[M1,E2]	0.000183 14	B(M1)(W.u.)=0.091 +38-23 if M1, B(E2)(W.u.)=1.7×10 ² +7-4 if E2. $\alpha(K)=9.4\times10^{-5} 4$; $\alpha(L)=9.3\times10^{-6} 4$; $\alpha(M)=1.30\times10^{-6} 5$ $\alpha(N)=4.00\times10^{-8} 15$; $\alpha(IPF)=7.8\times10^{-5} 10$ E _y ,I _y : from (d, ³ Hey) only. E _y ,I _y : from (d, ³ Hey) only.				
		2831.2 ^b		0.0	3/2-			B(M1)(W.u.)=0.0077 +32-20 if M1, B(E2)(W.u.)=5.9 +24-15 if E2. E_{γ} : from (p, γ):E=res only, as the only transition seen from the 2832 level, which is however not seen in (d, ³ He γ). This makes either this placement of this transition questionable or the two levels different				
2835.83	(5/2 ⁻)	976.0 2 2166.0 <i>1</i> 2837.5 <i>1</i>	41 <i>14</i> 100 <i>14</i> 59 <i>14</i>	1861.34 669.724 0.0	7/2 ⁻ 1/2 ⁻ 3/2 ⁻							
2857.55	(1/2 ⁻ ,3/2 ⁻)	1446.4 2	89 <i>3</i>	1412.124	5/2-	[M1,E2]	0.000173 13	α (K)=0.000102 4; α (L)=1.00×10 ⁻⁵ 4; α (M)=1.41×10 ⁻⁶ 6 α (N)=4.33×10 ⁻⁸ 18; α (IPF)=5.9×10 ⁻⁵ 8 B(E2)(W.u.)=5 +5-3				
								E_{γ} : weighted average of 1445.8 4 from 63 Zn ε + β ⁺ decay and 1446.4				
					Ado	pted Levels	, Gammas (con	tinued)				
------------------------	---------------------------------------	------------------	-------------------------	----------	------------------------	---------------------	--------------------	---				
						γ(⁶³ Cι	u) (continued)					
E _i (level)	${ m J}^{\pi}_i$	E _γ ‡	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	a^{\dagger}	Comments				
2857.55	(1/2 ⁻ ,3/2 ⁻)	1896.0 <i>1</i>	31 6	962.145	5/2-	[M1,E2]	0.000305 26	<i>I</i> from $(n,n'\gamma)$. I_{γ} : weighted average of 88.6 29 from (p,γ) :E=res, 86 29 from ⁶³ Zn $\varepsilon + \beta^+$ decay, and 100 <i>I6</i> from $(n,n'\gamma)$. $\alpha(K)=6.09\times10^{-5}$ <i>I7</i> ; $\alpha(L)=5.98\times10^{-6}$ <i>I7</i> ; $\alpha(M)=8.41\times10^{-7}$ 24 $\alpha(N)=2.59\times10^{-8}$ 7; $\alpha(IPF)=0.000237$ 25 B(E2)(W.u.)=0.43 +46-24				
		2187.0 10	63 <i>3</i>	669.724	1/2-	[M1,E2]	0.000423 <i>34</i>	I _γ : weighted average of 31 6 from (p,γ):E=res and 31 14 from (p,p'γ). Other: 132 16 from (n,n'γ) is discrepant. α (K)=4.72×10 ⁻⁵ 11; α (L)=4.63×10 ⁻⁶ 11; α (M)=6.50×10 ⁻⁷ 16 α (N)=2.00×10 ⁻⁸ 5; α (IPF)=0.000370 33 E _γ : unweighted average of 2188.0 7 from ⁶³ Zn ε+β ⁺ decay and				
		2858.5 <i>1</i>	100 3	0.0	3/2-	[M1,E2]	0.00071 5	2186.0 2 from (n,n' γ). I _{γ} : weighted average of 62.9 29 from (p, γ):E=res, 47 16 from (n,n' γ), 64 11 from (p, $p'\gamma$), and 57 29 from ⁶³ Zn ε + β ⁺ decay. B(M1)(W.u.)=0.0012 +13-7 if M1, B(E2)(W.u.)=0.42 +45-23 if E2. α (K)=3.00×10 ⁻⁵ 6; α (L)=2.93×10 ⁻⁶ 6; α (M)=4.12×10 ⁻⁷ 9 α (N)=1.272×10 ⁻⁸ 26; α (IPF)=0.00067 5				
								E _γ : from (n,n'γ). Others: 2857.7 7 from ⁶³ Zn ε+β ⁺ decay and 2858.0 6 from (d, ³ Heγ). I _γ : from (p,γ):E=res. Others: 100 17 from ⁶³ Zn ε+β ⁺ decay, 100 16 from (n,n'γ), and 100 14 from (p,p'γ). B(M1)(W.u.)=8×10 ⁻⁴ +9-5 if M1, B(E2)(W.u.)=0.18 +19-10 if E2.				
2889.29	$(1/2^-, 3/2, 5/2^-)$	807.96	19.2 19	2081.32	$5/2^{-}$			E_{γ}, I_{γ} : from (p, γ) :E=res.				
		1926.7 <i>1</i>	100 4	962.145	5/2-			E_{γ} : from (n,n'γ). Other: 1927.0 7 from ⁶³ Zn ε+β ⁺ decay. I _γ : from (p,γ):E=res. Others: 100 16 from ⁶³ Zn ε+β ⁺ decay, 100 16 from (n,n'γ), and 100 9 from (p,p'γ).				
		2219.1 3	31.1 27	669.724	1/2-			E _γ : weighted average of 2219.9 7 from ⁶³ Zn ε +β ⁺ decay and 2219.0 2 from (n,n'γ). I _γ : unweighted average of 52 15 from ⁶³ Zn ε +β ⁺ decay, 30.8 19				
		2889.1 2	37 4	0.0	3/2-			from (p,γ) :E=res. Other: 16.5 from $(n,n'\gamma)$ is discrepant. E_{γ} : weighted average of 2889.6 5 from 63 Zn $\varepsilon + \beta^+$ decay and 2889.0 2 from $(n,n'\gamma)$. I_{γ} : weighted average of 38.5 from 63 Zn $\varepsilon + \beta^+$ decay, 42.4 from				
								(p,γ) :E=res, and 28 5 from $(p,p'\gamma)$. Other: 16.3 32 from $(n,n'\gamma)$ is discrepant				
2911.04		406.0 1	100	2505.08	$9/2^{+}$			E_{ν} : from (¹⁶ O, α p γ).				
2958.90		944.0 1	84 16	2012.274	$3/2^{-}$			-/······(······························				
		1996.8 <i>1</i>	84 16	962.145	5/2-							
		2956.0 1	100 11	0.0	3/2-							
2976.94	1/2-,3/2-,5/2-	2308.0 2	17.7 12	669.724	$1/2^{-}$			I_{γ} : from (p,γ) :E=res. Other: 67 from $(n,n'\gamma)$.				

Adopted Levels, Gammas (continued)

$\gamma(^{63}Cu)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{\dagger}	Comments
2976.94 3032.17	1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻ 3/2 ⁻	2976.8 2 1706.6 1 2070 0 2	100.0 <i>12</i> 74 8 24 10	0.0 1326.014	3/2 ⁻ 7/2 ⁻ 5/2 ⁻			I _{γ} : from (p, γ):E=res. Other: 100 33 from (n,n' γ).
3044.52	(5/2)-	3032.1 <i>I</i> 547.26	100 <i>19</i> 9.0 <i>13</i>	0.0 2497.26	$3/2^{-}$ (3/2)			E_{γ}, I_{γ} : from (p, γ) :E=res.
		1497.39 2372.6 <i>1</i>	$10.3 \ 13$ 7.7 13	1547.109 669.724	$3/2^{-}$ $1/2^{-}$			E_{γ}, I_{γ} : from (p, γ) :E=res. L.: from (p, γ) :E=res.
		3043.5 10	100.0 13	0.0	3/2-			E _γ : unweighted average of 3044.4 7 from ⁶³ Zn ε +β ⁺ decay and 3042.5 <i>I</i> from (n,n'γ). I _γ : from (p,γ):E=res. Other: I(3043γ)/I(2373γ)=55 <i>10</i> /100 <i>24</i> is
3095.21	(1/2,3/2,5/2 ⁻)	2425.5 2 3095.1 <i>1</i>	31 <i>16</i> 100 <i>23</i>	669.724 0.0	$\frac{1}{2^{-}}$			discrepant.
3100.54	1/2 ⁻ ,3/2 ⁻	2430.77 3100.8 7	81.8 <i>18</i> 100.0 <i>18</i>	669.724 0.0	1/2 ⁻ 3/2 ⁻			E_{γ} , I_{γ} : from (p, γ):E=res. E_{γ} : weighted average of 3100.7 7 from ⁶³ Zn ε+β ⁺ decay and 3100.9 10 from (n,n'γ).
3128.1	_	1117.4	100	2012.274	3/2-			I_{γ} : from (p,γ) :E=res. E _v : from (p,γ) :E=res. Other: 1119.0 /8 for a doublet in $(n,n'\gamma)$.
3225.3	5/2-	2555.5 ^{&}	100 &	669.724	$1/2^{-}$			
		3225.2 <mark>&</mark>	52 <mark>&</mark>	0.0	3/2-			E_{γ} : other: 3222 3 from $(n,n'\gamma)$.
3248	(5/2)	2578 3	100	669.724	1/2-			
3263.7	$(5/2^{-})$	2593.8°	67 ⁰⁰	669.724	$1/2^{-}$			
3292.4	$(3/2^+ 5/2^+)$	3263.5	100	0.0	$\frac{3}{2}$			
3295.00	$(11/2^+)$	618.0 1	63	2677.17	$11/2^{-}$			E_{γ}, I_{γ} : from (¹⁶ O, $\alpha p \gamma$).
		790.0 1	100	2505.08	9/2+			E_{γ}, I_{γ} : from (¹⁶ O, $\alpha p \gamma$).
		1087.0 <i>1</i>	25	2207.84	9/2-			E_{γ}, I_{γ} : from (¹⁶ O, $\alpha p \gamma$).
3297.62	3/2-	2627.7 1	100 4	669.724	1/2-	[M1,E2]	0.00061 4	$\alpha(K)=3.45\times10^{-5}$ 7; $\alpha(L)=3.37\times10^{-6}$ 7; $\alpha(M)=4.74\times10^{-7}$ 10 $\alpha(N)=1.463\times10^{-8}$ 30; $\alpha(IPF)=0.00057$ 4 E_{γ} : from (d, ³ He γ). I_{γ} : from (p, γ):E=res. Other: 100 8 from (d, ³ He γ).
		3297.4 17	38 10	0.0	3/2-	[M1,E2]	0.00088 5	B(M1)(W.u.)=0.06 +7-3 if M1, B(E2)(W.u.)=14 +16-7 if E2. α (K)=2.38×10 ⁻⁵ 5; α (L)=2.33×10 ⁻⁶ 5; α (M)=3.28×10 ⁻⁷ 7 α (N)=1.011×10 ⁻⁸ 20; α (IPF)=0.00086 5 E _{γ} : from (d, ³ He γ). I _{γ} : unweighted average of 28.2 26 from (p, γ):E=res and 47 8 from
								(d, ³ Heγ). B(M1)(W.u.)=0.011 +13-6 if M1, B(E2)(W.u.)=1.7 +20-9 if E2.
3307.03	$(3/2^+)$	1244.83 <mark>&</mark>	91 <mark>&</mark> 6	2062.45	(3/2)-			

	Adopted Levels, Gammas (continued)													
						γ (⁶³ Cu)	(continued)							
E _i (level)	\mathbf{J}_i^{π}	E_{γ} ‡	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments					
3307.03	(3/2 ⁺)	1295.74 ^{&} 2344.84 ^{&} 2637.25 ^{&} 3306.94 ^{&}	43.8 ^{&} 31 100 ^{&} 6 46.9 ^{&} 31 25 ^{&} 6	2012.274 962.145 669.724 0.0	3/2 ⁻ 5/2 ⁻ 1/2 ⁻ 3/2 ⁻									
3309.6	(3/2+,5/2+)	1762.5 ^{&} 3309.5 ^{&}	100 ^{&} 100 ^{&}	1547.109 0.0	3/2 ⁻ 3/2 ⁻									
3404.41 3418.16	(1/2 to 7/2) (1/2 to 7/2)	3404.31 920.89 ^{&}	100 61.3 ^{&} 16	0.0 2497.26	$3/2^{-}$ (3/2)				E_{γ} : from (p,γ) :E=res.					
3426.0	1/2-,3/2-	3418.06 ^{&} 2756 <i>3</i> 3426 3	100.0 ^{&} 16 68 16 100 32	$0.0 \\ 669.724 \\ 0.0$	$3/2^{-}$ $1/2^{-}$ $3/2^{-}$				E_{γ} : other: 3418 <i>3</i> from $(n,n'\gamma)$.					
3429.80	(3/2)-	$2467.60^{\&} 3$ $3429.70^{\&}$	$23.5^{\&} 13$ 100 0 ^{&} 13	962.145 0.0	$5/2^{-}$ $3/2^{-}$				E_{γ} : other: 2468 3 from (n,n' γ).					
3461.17	11/2+	955.8 2	100	2505.08	9/2 ⁺	M1+E2	-0.42 4	0.000253 4	α(K)=0.0002271 34; α(L)=2.242×10-5 34; α(M)=3.15×10-6 5 α(N)=9.66×10-8 14 B(M1)(W.u.)=0.11 +11-6; B(E2)(W.u.)=36 +39-20 Eγ: unweighted average of 956.0 1 from (16O,αpγ), 955.4 1 from (18O,αp2nγ), 956.1 5 from (α,pγ), 955.5 2 from (α,pnγ). Mult.,δ: from γ(θ) and γ(lin pol) in (α,pγ). Other: -0.8 +2-4 from γ(θ) in (α,pnγ).					
3461.3	5/2+	955.0 <i>17</i> 3461 2 ^b	100	2505.08	9/2+ 3/2-				E : reported in (n, v) : E=res, but not seen in $(n, n'v)$					
3465.00	1/2 ⁻ ,3/2 ⁻	2795.21 ^{&}	85.5 ^{&} 18	669.724	1/2-	[M1,E2]		0.00068 5	$\alpha(K)=3.11\times10^{-5} 6; \ \alpha(L)=3.04\times10^{-6} 6; \alpha(M)=4.28\times10^{-7} 9 \alpha(N)=1.320\times10^{-8} 27; \ \alpha(IPF)=0.00065 4 B(M1)(W.u.)=0.007 +10-4 if M1, B(E2)(W.u.)=1.5 +21-9 if E2.$					
		3465.2 ^{&} 19	100 ^{&} 4	0.0	3/2-	[M1,E2]		0.00095 5	$\alpha(K)=2.21\times10^{-5} 4; \ \alpha(L)=2.15\times10^{-6} 4; \alpha(M)=3.03\times10^{-7} 6 \alpha(N)=9.35\times10^{-9} 19; \ \alpha(IPF)=0.00092 5 E_{\gamma}: \text{ other: } 3465.2 19 \text{ from } (n,n'\gamma). B(M1)(W.u.)=0.004 +6-3 \text{ if } M1, B(E2)(W.u.)=0.6 +8-4 \text{ if } F2$					
3474.59 3541.3	5/2 ⁺ (1/2 ⁻ to 7/2)	3474.49 <i>3</i> 2579.1 ^{&}	100 49 ^{&} 8	0.0 962.145	3/2 ⁻ 5/2 ⁻				E_{γ} : from (p, γ):E=res. Other: 3475 3 from (n,n' γ).					

Adopted Levels, Gammas (continued)

$\gamma(^{63}Cu)$ (continued)

E _i (level)	${ m J}^{\pi}_i$	Ε _γ ‡	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	α^{\dagger}	Comments
3541.3 3556.8 3565.6 3569.47	(1/2 ⁻ to 7/2) (11/2 ⁻)	3541.2 ^{&} 1008.9 5 3565 3 3569 36	100 ^{&} 14 100 100	$\begin{array}{ccc} 0.0 & 3/2^{-} \\ 2547.55 & 9/2^{-} \\ 0.0 & 3/2^{-} \\ 0.0 & 3/2^{-} \end{array}$			
3580.71	1/2-,3/2-	2910.0 <i>6</i>	100 5	669.724 1/2 ⁻	[M1,E2]	0.00073 5	$\alpha(K)=2.91\times10^{-5}$ 6; $\alpha(L)=2.85\times10^{-6}$ 6; $\alpha(M)=4.01\times10^{-7}$ 8 $\alpha(N)=1.236\times10^{-8}$ 25: $\alpha(IPF)=0.00070$ 5
		3580.6	72 13	0.0 3/2-	[M1,E2]	0.00099 5	$ \begin{array}{l} E_{\gamma}: \text{ from } (d,^{3}\text{He}\gamma). \\ I_{\gamma}: \text{ from } (p,\gamma)\text{:}E=\text{res. Other: } 100 \ 9 \ \text{from } (d,^{3}\text{He}\gamma). \\ B(M1)(W.u.)=0.10 \ +18-7 \ \text{if } M1, \ B(E2)(W.u.)=21 \ +37-13 \ \text{if } E2. \\ \alpha(K)=2.10\times10^{-5} \ 4; \ \alpha(L)=2.05\times10^{-6} \ 4; \ \alpha(M)=2.88\times10^{-7} \ 6 \\ \alpha(M)=2.88\times10^{-7} \ 6 \end{array} $
							$\alpha(N)=8.89\times10^{-7} 18; \alpha(PF)=0.00096.5$ $E_{\gamma}: \text{ from } (p,\gamma):E=\text{res. Other: } 3574.2.24 \text{ from } (d,^{3}\text{He}\gamma).$ $I_{\gamma}: \text{ unweighted average of } 59.5 \text{ from } (p,\gamma):E=\text{res and } 85.9 \text{ from } (d,^{3}\text{He}\gamma).$ B(M1)(W.u.)=0.04 + 7 - 3 if M1, B(E2)(W.u.)=5 + 9 - 4 if E2.
3583.3	(5/2 ⁻ ,7/2 ⁻)	2256.2 9	92 8	1326.014 7/2-	[M1,E2]	0.00045 4	$\alpha(\text{K})=4.47 \times 10^{-5} \ 10; \ \alpha(\text{L})=4.38 \times 10^{-6} \ 10; \ \alpha(\text{M})=6.16 \times 10^{-7} \ 14 \ \alpha(\text{N})=1.90 \times 10^{-8} \ 4; \ \alpha(\text{IPF})=0.000402 \ 35 \ \text{E} \ \text{L} \ \text{i} \ \text{from} \ (\text{d}^{3}\text{Heat})$
		2621.5 8	100 8	962.145 5/2-	[M1,E2]	0.00061 4	B(M1)(W.u.)=0.009 +10-5 if M1, B(E2)(W.u.)=3.1 +32-16 if E2. $\alpha(K)=3.46\times10^{-5}$ 7; $\alpha(L)=3.39\times10^{-6}$ 7; $\alpha(M)=4.76\times10^{-7}$ 10 $\alpha(N)=1.468\times10^{-8}$ 30; $\alpha(IPF)=0.00057$ 4 E _{γ} ,I _{γ} : from (d, ³ He γ). B(M1)(W.u.)=0.006 +7-3 if M1, B(E2)(W.u.)=1.6 +17-8 if E2.
3607	5/2 ⁻ ,7/2 ⁻	3607 <i>3</i>	100	$0.0 3/2^{-}$			
3047.31	(1/2,3/2,3/2)	1383.30 ⁴⁴ 2977.71 ^{&}	8.2 ⁻⁰ 0 100 ^{&} 7	2062.43 (3/2) 669.724 1/2 ⁻			
3656.8 3681.0	(1/2,3/2,5/2 ⁻) 5/2 ⁻ ,7/2 ⁻	3656.7 2718.8 7	100 100	0.0 3/2 ⁻ 962.145 5/2 ⁻	[M1,E2]	0.00065 4	E _γ : from (p,γ):E=res. Other: 3659 <i>3</i> from (n,n'γ). α (K)=3.26×10 ⁻⁵ 7; α (L)=3.19×10 ⁻⁶ 7; α (M)=4.48×10 ⁻⁷ 9 α (N)=1.382×10 ⁻⁸ 28; α (IPF)=0.00061 <i>4</i> E _γ ,I _γ : from (d, ³ Heγ). B(M1)(W µ)=0.017 + <i>l</i> 0-6 if M1 B(E2)(W µ)=4.1 + 23- <i>l</i> 3 if E2
3719.04	(1/2,3/2)+	2756.83 ^{&} 3049.24 ^{&}	$92.1^{\&} 26$ $100.0^{\&} 26$	962.145 5/2 ⁻ 669.724 1/2 ⁻			
3737.3	(13/2 ⁻)	3718.92 ^{&} 1529.7 <i>5</i>	23.7 ^{&} 26 100	0.0 3/2 ⁻ 2207.84 9/2 ⁻	Q		E_{γ} : from (¹⁸ O, α p2n γ).
3740.19	$(3/2, 5/2)^+$	2193.04 3740.07	56.3 <i>31</i> 100.0 <i>31</i>	$\begin{array}{ccc} 1547.109 & 3/2^{-} \\ 0.0 & 3/2^{-} \end{array}$	-		
3774.43	$(1/2, 3/2, 5/2^{-})$	1712.22 <mark>&</mark>	41 ^{&} 4	2062.45 (3/2)-			

	Adopted Levels, Gammas (continued)														
	γ ⁽⁶³ Cu) (continued)														
E _i (level)	J^π_i	E _γ ‡	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α^{\dagger}	Comments							
3774.43 3775.2	(1/2,3/2,5/2 ⁻) 5/2 ⁻ ,7/2 ⁻	3774.31 ^{&} 1437.6 5	100 ^{&} 4 68 5	0.0 2336.48	3/2 ⁻ 5/2 ⁻	[M1,E2]	0.000172 13	$\alpha(K)=0.000103 \ 4; \ \alpha(L)=1.01\times10^{-5} \ 5; \ \alpha(M)=1.43\times10^{-6} \ 6 \ \alpha(N)=4.38\times10^{-8} \ 18; \ \alpha(IPF)=5.7\times10^{-5} \ 8 \ F_{\rm ev}$ Ly from (d ³ Hey)							
		1913.0 6	83 8	1861.34	7/2-	[M1,E2]	0.000311 27	B(M1)(W.u.)=0.017 +7-5 if M1, B(E2)(W.u.)=14 +6-4 if E2. α (K)=6.00×10 ⁻⁵ 16; α (L)=5.88×10 ⁻⁶ 16; α (M)=8.27×10 ⁻⁷ 23							
								α (N)=2.55×10 ⁻⁸ 7; α (IPF)=0.000245 25 E _y ,I _y : from (d, ³ He _y). B(M1)(W.u.)=0.0090 +36-26 if M1, B(E2)(W.u.)=4.2 +17-12 if E2.							
		2448.9 5	100 5	1326.014	7/2-	[M1,E2]	0.00053 4	$\begin{aligned} &\alpha(\mathrm{K}) = 3.88 \times 10^{-5} \ 9; \ \alpha(\mathrm{L}) = 3.80 \times 10^{-6} \ 8; \ \alpha(\mathrm{M}) = 5.34 \times 10^{-7} \ 12 \\ &\alpha(\mathrm{N}) = 1.647 \times 10^{-8} \ 35; \ \alpha(\mathrm{IPF}) = 0.00049 \ 4 \\ &\mathrm{E}_{\gamma}, \mathrm{I}_{\gamma}: \ \mathrm{from} \ (\mathrm{d}, {}^{3}\mathrm{He}\gamma). \\ &\mathrm{B}(\mathrm{M1})(\mathrm{W}.\mathrm{u}.) = 0.0052 \ + 21 - 14 \ \mathrm{if} \ \mathrm{M1}, \ \mathrm{B}(\mathrm{E2})(\mathrm{W}.\mathrm{u}.) = 1.5 \ + 6 - 4 \ \mathrm{if} \\ &\mathrm{E2}. \end{aligned}$							
3785.53	1/2 ⁻ ,3/2 ⁻	1103.07 ^{&} 1774.23 ^{&} 2373.36 ^{&} 2823.32 ^{&} 3115.72 ^{&}	$ \begin{array}{r} 10.8^{\&} 8 \\ 5.8^{\&} 10 \\ 38^{\&} 2 \\ 28^{\&} 2 \\ 100^{\&} 2 \end{array} $	2682.45 2012.274 1412.124 962.145 669.724	(1/2 ⁻ ,3/2 ⁻) 3/2 ⁻ 5/2 ⁻ 5/2 ⁻ 1/2 ⁻										
3866.55 3888.8	(1/2 ⁻ to 7/2) 5/2 ⁻ ,7/2 ⁻	2904.33 ^{&} 2562.0 7	100 100 <i>9</i>	962.145 1326.014	5/2 ⁻ 7/2 ⁻	[M1,E2]	0.00058 4	$\alpha(K)=3.60\times10^{-5} 8$; $\alpha(L)=3.52\times10^{-6} 8$; $\alpha(M)=4.95\times10^{-7} 11$ $\alpha(N)=1.526\times10^{-8} 32$; $\alpha(IPF)=0.00054 4$ E_{γ},I_{γ} : from (d, ³ He γ) only; not seen in (n,n' γ).							
		2926.2 13	70 9	962.145	5/2-	[M1,E2]	0.00074 5	B(M1)(W.u.)=0.0065 +44-26 if M1, B(E2)(W.u.)=1.7 +12-7 if E2. $\alpha(K)=2.89\times10^{-5}$ 6; $\alpha(L)=2.82\times10^{-6}$ 6; $\alpha(M)=3.97\times10^{-7}$ 8 $\alpha(N)=1.225\times10^{-8}$ 25; $\alpha(IPF)=0.00070$ 5 E _{γ} : weighted average of 2928 3 from (n,n' γ) and 2925.9 13 from (d, ³ He γ). I _{γ} : from (d, ³ He γ). B(M1)(W.u.)=0.0030 +21-12 if M1, B(E2)(W.u.)=0.61 +42-25 if E2.							
3895.1	5/2-,7/2-	3889 <i>3</i> 3895.0 <i>9</i>	100	0.0 0.0	3/2 ⁻ 3/2 ⁻	[M1,E2]	0.00110 5	E _γ ,I _γ : from (n,n'γ) only, I(3889γ)/I(2928γ)=100 57/186 72. α (K)=1.84×10 ⁻⁵ 4; α (L)=1.80×10 ⁻⁶ 4; α (M)=2.53×10 ⁻⁷ 5 α (N)=7.81×10 ⁻⁹ 16; α (IPF)=0.00108 5							

Т

					Adopted	Levels, Ga	mmas (continu	(ed)
						γ(⁶³ Cu) (c	ontinued)	
E _i (level)	J^{π}_{i}	E_{γ}^{\ddagger}	I _γ ‡	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α^{\dagger}	Comments
								E _γ : from (d, ³ Heγ). B(M1)(W.u.)=0.013 +5-4 if M1, B(E2)(W.u.)=1.5 +6-4 if E2.
3897.45	(3/2+,5/2+)	3897.32 ^{&}	100	0.0	3/2-			
3902.1	$(3/2^+, 5/2^+)$	3902.0 ^{&}	100	0.0	3/2-			10
3932.3	$(13/2^{-})$	1255.4 5	100	2677.17	$11/2^{-}$			E_{γ} : from (¹⁸ O, α p2n γ).
3960.1		3960.0 [°]	100	0.0	3/2-			
3978.47	$(1/2, 3/2, 5/2^{-})$	1916.25 [°]	38.9 28	2062.45	$(3/2)^{-}$			
		1967.16 ^{cc}	100 8	2012.274	3/2-			
4017.08	1/2-,3/2-	4016.94 [°]	100	0.0	3/2-			
4039.1	$(3/2^{-})$	2178° 2	93 19	1861.34	7/2-			
4054.04	1/2- 2/2-	2/12° 3	100 26	1326.014	1/2			
4054.84	1/2 ,3/2	3385.02 ^{cc}	65 ^{cc} 11	669.724	1/2			
4110.5	1/2+	4054.70 4110.4 7	100 <i>33</i>	0.0	3/2 ⁻ 3/2 ⁻	[E1]	1.73×10 ⁻³ 2	$\alpha(K)=1.222\times10^{-5} \ 17; \ \alpha(L)=1.190\times10^{-6} \ 17;$ $\alpha(M)=1.673\times10^{-7} \ 23$ $\alpha(N)=5.16\times10^{-9} \ 7; \ \alpha(IPF)=0.001719 \ 24$ B(E1)(W.u.)=2.9×10^{-4} +10-9 E : from (d ³ Her). Other: 4110 4 from (n n'a)
4113.20	$(1/2^+)$	4113.06	100	0.0	3/2-			
4119.1	$(1/2^+)$	4119.0	100	0.0	3/2-			
4124.61	$(1/2 \text{ to } 7/2^{-})$	2113.30	56 ^{&} 11	2012.274	3/2-			
		2577.44 &	94 ^{&} 11	1547.109	3/2-			
		4124.47 ^{&} 4	100 211	0.0	3/2-			E_{γ} : other: 4127 4 from $(n,n'\gamma)$.
4129.10	$13/2^{+}$	571.7 5	(a) 7	3556.8	$(11/2^{-})$	0.00	0.000510.5	E_{γ} : from (¹⁸ O, α p2n γ), weak.
		668.1 2	68 7	3461.17	11/2*	(M1)	0.0005197	$\begin{array}{l} \alpha(\text{K})=0.000466 \ 7; \ \alpha(\text{L})=4.62 \times 10^{-5} \ 6; \ \alpha(\text{M})=6.50 \times 10^{-6} \ 9 \\ \alpha(\text{N})=1.988 \times 10^{-7} \ 28 \\ \text{B}(\text{M}1)(\text{W.u.})=0.012 \ +5-4 \\ \text{E}_{\gamma}: \text{ weighted average of } 668.0 \ 1 \ \text{from } (^{16}\text{O},\alpha\text{p}\gamma), \ 668.1 \ 3 \\ \text{from } (^{18}\text{O},\alpha\text{p}2\text{n}\gamma), \ \text{and } 668.5 \ 2 \ \text{from } (\alpha,\text{pn}\gamma). \end{array}$
		1451.8 <i>5</i>	20.5 23	2677.17	11/2-	[E1]	0.000279 4	 I_γ: from (¹⁸O,αp2nγ). Mult.: D from γγ(DCO) in (¹⁸O,αp2nγ); Δπ=no from level scheme. α(K)=5.34×10⁻⁵ 7; α(L)=5.23×10⁻⁶ 7; α(M)=7.35×10⁻⁷ 10 α(N)=2.256×10⁻⁸ 32; α(IPF)=0.0002194 31 B(E1)(W.u.)=6.6×10⁻⁶ +30-25

From ENSDF

 $^{63}_{29}$ Cu₃₄-42

 $^{63}_{29}$ Cu₃₄-42

L

	Adopted Levels, Gammas (continued)													
						γ ⁽⁶³ Cu)	(continued)							
E _i (level)	${ m J}^{\pi}_i$	E _γ ‡	I_{γ}^{\ddagger}	E_f	J_f^π	Mult. [#]	$\delta^{\#}$	$lpha^{\dagger}$	Comments					
4129.10	13/2+	1623.9 2	100 5	2505.08	9/2+	E2		0.0002310 32	B(E2)(W.u.)=0.78 +35-28 α (K)=8.39×10 ⁻⁵ 12; α (L)=8.25×10 ⁻⁶ 12; α (M)=1.160×10 ⁻⁶ 16 α (N)=3.56×10 ⁻⁸ 5; α (IPF)=0.0001376 19 E _γ : weighted average of 1623.6 3 from (¹⁸ O,αp2nγ) and 1624.0 2 from (α,pnγ). E _γ ,I _γ : from (¹⁸ O,αp2nγ). Mult.: Q from γγ(DCO) in (¹⁸ O,αp2nγ); M2 ruled out by RUL.					
4132.78	(1/2 ⁻ to 7/2 ⁻)	3170.55 ^{&} 4132.63 ^{&}	$100^{\&} 7$ $60^{\&} 20$	962.145 0.0	5/2 ⁻ 3/2 ⁻									
4145.1	(1/2 ⁻ to 7/2 ⁻)	3183.10 ^{&} 4145.18 ^{&}	98 ^{&} 7 100 ^{&} 7	962.145 0.0	5/2 ⁻ 3/2 ⁻				E_{γ} : other: 4141 4 from $(n,n'\gamma)$.					
4148.18	$(1/2, 3/2, 5/2^{-})$	3478.35 <mark>&</mark>	100	669.724	1/2-				·					
4155.56	13/2+	694.1 <i>1</i>	25.3 11	3461.17	11/2+	M1+E2	-0.32 +20-40	0.00050 5	$ α(K)=0.00045 5; α(L)=4.4×10^{-5} 5; α(M)=6.2×10^{-6} 7 α(N)=1.90×10^{-7} 19 B(M1)(W.u.)=0.0031 +18-12; B(E2)(W.u.)=1.1 +34-10 Eγ: weighted average of 694.0 1 from (16O,αpγ), 694.1 1 from (18O,αp2nγ), and 694.3 2 from (α,pnγ). Iγ: from (18O,αp2nγ). Mult.,δ: D+Q and δ from γ(θ) in (α,pnγ); E1+M2 ruled out by RUL.$					
		861.0 <i>I</i>	13	3295.00	(11/2+)	[M1,E2]		0.00034 4	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00031 \ 4; \ \alpha(\mathbf{L}) = 3.1 \times 10^{-5} \ 4; \\ &\alpha(\mathbf{M}) = 4.3 \times 10^{-6} \ 5 \\ &\alpha(\mathbf{N}) = 1.31 \times 10^{-7} \ 15 \\ &\mathbf{E}_{\gamma}, \mathbf{I}_{\gamma}: \ \text{from} \ (^{16}\mathbf{O}, \alpha p \gamma) \ \text{only.} \\ &\mathbf{B}(\mathbf{M}1)(\mathbf{W}.\mathbf{u}.) = 9 \times 10^{-4} \ +6 - 3 \ \text{if} \ \mathbf{M}1, \\ &\mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) = 2.1 \ +15 - 7 \ \text{if} \ \mathbf{E}2. \end{aligned}$					
		1649.8 <i>1</i>	100 4	2505.08	9/2+	E2		0.0002394 <i>34</i>	$\begin{aligned} &\alpha(\mathbf{K}) = 8.13 \times 10^{-5} \ 11; \ \alpha(\mathbf{L}) = 8.00 \times 10^{-6} \ 11; \\ &\alpha(\mathbf{M}) = 1.125 \times 10^{-6} \ 16 \\ &\alpha(\mathbf{N}) = 3.45 \times 10^{-8} \ 5; \ \alpha(\mathbf{IPF}) = 0.0001489 \ 21 \\ &\mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) = 0.63 \ + 42 - 19 \\ &\mathbf{E}_{\gamma}: \text{ weighted average of } 1650.0 \ 1 \ \text{from} \\ &(^{16}\mathbf{O}, \alpha \mathbf{p}\gamma), \ 1649.7 \ 1 \ \text{from} \ (^{18}\mathbf{O}, \alpha \mathbf{p}2\mathbf{n}\gamma), \text{ and} \end{aligned}$					

From ENSDF

Т

	Adopted Levels, Gammas (continued)												
						γ ⁶³	Cu) (continued)						
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{\dagger}	Comments					
4155.56	13/2+	1880.1 <i>5</i>	2.03 23	2274.7	(9/2 ⁻)	(M2)	0.0002243 <i>31</i>	1649.8 2 from (α,pnγ). Other: 1649.6 6 fr (α,pγ). I _γ : from (¹⁸ O,αp2nγ). Mult.: Q from γγ(DCO) in (¹⁸ O,αp2nγ) and γ(θ) in (α,pnγ); M2 ruled out by RUL. $\alpha(K)=0.0001080 \ 15; \alpha(L)=1.065\times10^{-5} \ 15; \alpha(M)=1.499\times10^{-6} \ 21$ $\alpha(N)=4.61\times10^{-8} \ 6; \alpha(IPF)=0.0001040 \ 15$ B(M2)(W.u.)=0.35 +23-11 Mult: (Ω) from $\alpha\alpha(DCO)$ in (¹⁸ O αp2nα); $\Delta\pi=$ ves from					
4183.5 4189		4182 <i>4</i> 4189 <i>4</i>	100	0.0	$3/2^{-}$			level scheme.					
4225.59	5/2-,7/2-	2813.40 ^{&}	34 ^{&} 4	1412.124	5/2-	[M1,E2]	0.00069 5	$\alpha(K)=3.08\times10^{-5} 6$; $\alpha(L)=3.01\times10^{-6} 6$; $\alpha(M)=4.23\times10^{-7} 9$ $\alpha(N)=1.306\times10^{-8} 26$; $\alpha(IPF)=0.00065 5$ B(M1)(W.u.)=0.011 +6-4 if M1, B(E2)(W.u.)=2.3 +13-8 if F2					
		3263.35 18	100 4	962.145	5/2-	[M1,E2]	0.00087 5	$\alpha(K)=2.42\times10^{-5} 5; \ \alpha(L)=2.37\times10^{-6} 5; \ \alpha(M)=3.33\times10^{-7} 7$ $\alpha(N)=1.028\times10^{-8} 20; \ \alpha(IPF)=0.00084 5$ $E_{\gamma}: \ from \ (p,\gamma):E=res. \ Other: \ 3261.0 \ 18 \ from \ (d,^{3}He\gamma).$ $I_{\gamma}: \ from \ (d,^{3}He\gamma). \ Other: \ 100 \ 6 \ from \ (p,\gamma):E=res.$ $B(M1)(W.u.)=0.020 \ +11-6 \ if \ M1, \ B(E2)(W.u.)=3.3 \ +17-10 \ if \ E2.$					
		4225.44	24.0 20	0.0	3/2-	[E2]	1.27×10 ⁻³ 2	$\alpha(K)=1.654\times10^{-5} 23; \ \alpha(L)=1.614\times10^{-6} 23; \alpha(M)=2.270\times10^{-7} 32 \alpha(N)=7.01\times10^{-9} 10; \ \alpha(IPF)=0.001249 17 B(E2)(W.u.)=0.21 +12-7 E_{\gamma}: from (p,\gamma):E=res. Other: 4221.3 14 from (d,3He\gamma). Let \alpha_{\gamma} = 0 there \alpha_{\gamma} = 0 there \alpha_{\gamma} = 0 then \alpha_{\gamma} = 0 the \alpha_{\gamma} = 0 then \alpha_{\gamma} = 0 the \alpha_{\gamma} = 0 $					
4285.03	5/2-,7/2-	3322.79	100 11	962.145	5/2-	[M1,E2]	0.00089 5						
		4286.4 10	59 11	0.0	3/2-	[M1,E2]	0.00123 6	$ \begin{aligned} &\alpha(\mathrm{K}) = 1.596 \times 10^{-5} \ 32; \ \alpha(\mathrm{L}) = 1.557 \times 10^{-6} \ 32; \ \alpha(\mathrm{M}) = 2.19 \times 10^{-7} \\ &4 \\ &\alpha(\mathrm{N}) = 6.76 \times 10^{-9} \ 14; \ \alpha(\mathrm{IPF}) = 0.00121 \ 6 \end{aligned} $					

L.

					Adopte	d Levels,	Gammas (contin	nued)
						γ (⁶³ Cu)	(continued)	
E _i (level)	J_i^π	E_{γ}^{\ddagger}	I_{γ} ‡	E_f	\mathbf{J}_f^{π}	Mult. [#]	$lpha^\dagger$	Comments
								 E_γ: weighted average of 4282 <i>4</i> from (n,n'γ) and 4286.6 <i>9</i> from (d,³Heγ). I_γ: weighted average of 52 24 from (n,n'γ) and 61 <i>11</i> from (d,³Heγ). B(M1)(W.u.)=0.0033 +9-8 if M1, B(E2)(W.u.)=0.31 +9-8 if E2.
4289.49	1/2-,3/2-	3327.25 & 4289.33 &	24 ^{&} 3 100 ^{&} 5	962.145 0.0	5/2 ⁻ 3/2 ⁻			
4358.43	$(1/2^-, 3/2^-)$	3396.19 <mark>&</mark>	9.4 <mark>&</mark> 16	962.145	5/2-			
		3688.59 <mark>&</mark>	100 ^{&} 5	669.724	$1/2^{-}$			E_{γ} : other: 3692 3 from $(n,n'\gamma)$.
10.50 -		4358.27 ^{&}	20 ^{&} 3	0.0	3/2-			E_{γ} : other: 4362 4 from (n,n'γ). I _γ : other: I(4362γ)/I(3692γ)=100 57/57 57 is discrepant.
4362.0	$(1/2, 3/2, 5/2^{-})$	3692 <i>3</i> 4362 <i>4</i>	57 57 100 57	669.724	$\frac{1}{2^{-}}$			
4382.11	(1/2 to 7/2)	4381.95 ^{&}	100 57	0.0	$3/2^{-}$			E_{α} : other: 4381 4 from $(n,n'\gamma)$
4403.97	$(1/2^{-}.3/2.5/2^{-})$	3440.72 ^{&}	94 ^{&} 18	962.145	$5/2^{-}$			Ly. ouldi. (501 / 11011 (1,11 /).
4413.8	(3733.13 ^{&} 3004 <i>3</i>	100 ^{&} 24 100	669.724 1412.124	1/2 ⁻ 5/2 ⁻			
4419.70	$(1/2 \text{ to } 7/2^{-})$	2408.38 <mark>&</mark>	51 ^{&} 6	2012.274	3/2-			
		4419.53 <mark>&</mark>	100 ^{&} 14	0.0	3/2-			
4432.85	1/2+	3764.7 7	100 10	669.724	1/2-	[E1]	1.60×10 ⁻³ 2	$\alpha(K)=1.364\times10^{-5} \ 19; \ \alpha(L)=1.329\times10^{-6} \ 19; \\ \alpha(M)=1.868\times10^{-7} \ 26 \\ \alpha(N)=5.76\times10^{-9} \ 8; \ \alpha(IPF)=0.001584 \ 22 \\ B(E1)(W.u.)=2.6\times10^{-4} \ +16-10 \\ E_{\gamma},I_{\gamma}: \ from \ (d,^{3}He\gamma).$
		4432.4 3	92 10	0.0	3/2-	[E1]	1.85×10 ⁻³ 3	$\alpha(K)=1.114\times10^{-5}$ <i>I6</i> ; $\alpha(L)=1.085\times10^{-6}$ <i>I5</i> ; $\alpha(M)=1.524\times10^{-7}$ <i>21</i> $\alpha(N)=4.70\times10^{-9}$ 7; $\alpha(IPF)=0.001833$ 26 B(E1)(W.u.)=1.5×10^{-4} +9-6 E_{γ},I_{γ} : from (d, ³ He γ). Other: 4429 4 from (n,n' γ).
4457.02	(1/2,3/2,5/2 ⁻)	2394.79 ^{&} 3787.17 ^{&}	$61^{\&} 11$ $61^{\&} 11$ $100^{\&} 17$	2062.45 669.724	$(3/2)^{-}$ $1/2^{-}$ $2/2^{-}$			
4497.65	17/2+	342.1 <i>I</i>	100-2 1/	0.0 4155.56	3/2 13/2+	E2	0.00639 9	B(E2)(W.u.)=1.734 45 α (K)=0.00572 8; α (L)=0.000586 8; α (M)=8.20×10 ⁻⁵ 12 α (N)=2.372×10 ⁻⁶ 33 E _{γ} : weighted average of 342.0 1 from (¹⁶ O, α p γ), 342.1 1

From ENSDF

L

	Adopted Levels, Gammas (continued)												
						γ (⁶³ Cu	1) (continued)						
E _i (level)	\mathbf{J}_i^π	E _γ ‡	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$lpha^\dagger$	Comments					
								from (¹⁸ O, α p2n γ), 340.9 5 from (α ,p γ), and 342.3 2 from (α ,pn γ). I _{γ} : from (¹⁸ O, α p2n γ), Mult.: from $\gamma(\theta)$ and $\gamma($ lin pol) in (α ,p γ), $\gamma\gamma($ DCO) in (¹⁸ O, α p2n γ).					
4497.65	17/2+	368.0 <i>1</i>	13.4 7	4129.10	13/2+	[E2]	0.00497 7	$\alpha(K)=0.00445 \ 6; \ \alpha(L)=0.000454 \ 6; \ \alpha(M)=6.37\times10^{-5} \ 9 \ \alpha(N)=1.850\times10^{-6} \ 26 \ B(E2)(W.u.)=0.161 \ 10 \ E_{\gamma}: \ from (^{16}O, \alpha p\gamma). \ Other: \ 368.3 \ 3 \ from (^{18}O, \alpha p2n\gamma). \ I_{\gamma}: \ from (^{18}O, \alpha p2n\gamma).$					
4498.45	5/2-	3828.60 <i>3</i>	100 9	669.724	1/2-	[E2]	1.13×10 ⁻³ 2	$\alpha(K)=1.919\times10^{-5}\ 27;\ \alpha(L)=1.873\times10^{-6}\ 26;\ \alpha(M)=2.63\times10^{-7}\ 4$ $\alpha(N)=8.13\times10^{-9}\ 11;\ \alpha(IPF)=0.001111\ 16$ $B(E2)(W.u.)=3.6\ +14-8$ $E_{\gamma}:\ other:\ 3827\ 3\ from\ (n,n'\gamma).$					
		4498.5 7	59 17	0.0	3/2-	[M1,E2]	0.00130 6	$\begin{aligned} &\alpha(\text{K}) = 1.486 \times 10^{-5} \ 30; \ \alpha(\text{L}) = 1.450 \times 10^{-6} \ 30; \ \alpha(\text{M}) = 2.04 \times 10^{-7} \ 4 \\ &\alpha(\text{N}) = 6.30 \times 10^{-9} \ 13; \ \alpha(\text{IPF}) = 0.00128 \ 6 \\ &\text{E}_{\gamma}: \text{ weighted average of } 4496 \ 4 \ \text{from } (n,n'\gamma) \text{ and } 4498.6 \ 7 \\ &\text{from } (d,^{3}\text{He}\gamma). \\ &\text{I}_{\gamma}: \text{ from } (p,\gamma):\text{E=res.} \\ &\text{B}(\text{M1})(\text{W.u.}) = 0.0112 \ +42-32 \ \text{if } \text{M1}, \ \text{B}(\text{E2})(\text{W.u.}) = 0.96 \ +36-27 \\ &\text{if } \text{E2.} \end{aligned}$					
4501.43	(1/2 to 7/2)	4501.26 <mark>&</mark>	100	0.0	3/2-								
4505.52 4511.6	(1/2 to 7/2) (5/2 ⁻ ,7/2 ⁻)	3093.31 ^{&} 3549 <i>3</i> 4512 <i>4</i>	100 100 <i>40</i> 50 <i>30</i>	1412.124 962.145 0.0	5/2 ⁻ 5/2 ⁻ 3/2 ⁻								
4517.15	$(1/2, 3/2, 5/2^{-})$	3847.30 ^{&}	100 ^{&} 13	669.724	$1/2^{-}$								
4531.39 4533	(1/2 to 7/2)	4516.98 3569.14 4533 <i>4</i>	100	962.145 0.0	3/2 5/2 ⁻ 3/2 ⁻								
4576.70	15/2+	421.1 <i>I</i>	100 5	4155.56	13/2+	(M1)	1.46×10 ⁻³ 2	$\begin{aligned} &\alpha(K) = 0.001307 \ 18; \ \alpha(L) = 0.0001304 \ 18; \ \alpha(M) = 1.835 \times 10^{-5} \ 26 \\ &\alpha(N) = 5.59 \times 10^{-7} \ 8 \\ &B(M1)(W.u.) = 0.09 \ +7-4 \\ &E_{\gamma}: \ weighted average of 421.0 \ 1 \ from \ (^{16}O, \alpha p \gamma), \ 421.2 \ 3 \\ &from \ (^{18}O, \alpha p 2n \gamma), \ and \ 421.3 \ 2 \ from \ (\alpha, pn \gamma). \\ &I_{\gamma}: \ from \ (^{18}O, \alpha p 2n \gamma). \\ &Mult.: \ D \ from \ \gamma \gamma (DCO) \ in \ (^{18}O, \alpha p 2n \gamma); \ \Delta\pi = no \ from \ level \\ &scheme. \ Other: \ \delta(Q/D) = -0.07 \ +10-30 \ from \ \gamma(\theta) \ in \ (\alpha, pn \gamma). \end{aligned}$					

L

				A	Adopted I	evels, Gan	imas (continu	led)					
γ ⁽⁶³ Cu) (continued)													
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult. [#]	$\delta^{\#}$	$lpha^\dagger$	Comments				
4576.70	15/2+	447.1 2	36	4129.10	13/2+	M1+E2	-0.4 +2-5	0.0015 4	$\begin{aligned} \alpha(\text{K}) = 0.0013 \ 4; \ \alpha(\text{L}) = 1.3 \times 10^{-4} \ 4; \\ \alpha(\text{M}) = 1.8 \times 10^{-5} \ 5 \\ \alpha(\text{N}) = 5.5 \times 10^{-7} \ 15 \\ \text{B}(\text{M1})(\text{W.u.}) = 0.023 \ +15 - 12; \ \text{B}(\text{E2})(\text{W.u.}) < 104 \\ \text{E}_{\gamma}, \text{I}_{\gamma}: \ \text{from} \ (\alpha, \text{pn}\gamma). \ \text{Other:} \ 447.4 \ 5 \ \text{from} \\ (^{18}\text{O}, \alpha \text{p}2n\gamma). \\ \text{Mult.}, \delta: \ \text{D+Q} \ \text{and} \ \delta \ \text{from} \ \gamma(\theta) \ \text{in} \ (\alpha, \text{pn}\gamma); \\ \text{E1+M2} \ \text{ruled} \ \text{out by} \ \text{RUL}. \end{aligned}$				
4592.89	(1/2 to 7/2)	3630.63 ^{&}	100	962.145	5/2-								
4598 4613 4	$(15/2^{-})$	4598 4 875 9 5	100 13	0.0	$\frac{3}{2}$ (13/2 ⁻)				$F_{\rm e}$ I : from (¹⁸ O $\alpha p^2 p \gamma$)				
1015.1	(15/2)	1936.6 5	63 13	2677.17	$(13/2)$ $11/2^{-}$	(Q)			E_{γ},I_{γ} : from (¹⁸ O, α p2n γ).				
4640.0	(1/2 to 7/2)	4639.8 <mark>&</mark>	100	0.0	3/2-				E_{γ} : other: 4637 from $(n,n'\gamma)$.				
4643.75	(1/2 to 7/2)	3096.56 ^{&} 4643.57 ^{&}	100 ^{&} 11 67 ^{&} 5	1547.109 0.0	3/2 ⁻ 3/2 ⁻								
4646.70	(1/2 to 7/2)	4646.52 ^{&}	100	0.0	3/2-								
4752.66		3205.46	100	1547.109	3/2-								
4789.14	(1/2 to 7/2)	4788.95 ^{&}	100	0.0	3/2-								
4795.77	$(1/2^+)$	3833.50 ^{&}	100	962.145	5/2-								
4806.23	(1/2+)	4136.36	100	669.724	1/2-	[E1]		1.74×10 ⁻³ 2	$\alpha(K)=1.213\times10^{-3} \ 77; \ \alpha(L)=1.181\times10^{-6} \ 77; \alpha(M)=1.660\times10^{-7} \ 23 \alpha(N)=5.12\times10^{-9} \ 7; \ \alpha(IPF)=0.001728 \ 24$				
		4804 0 25		0.0	3/2-	IE 11		1.06×10^{-3} 3	B(E1)(W.u.)= $9 \times 10^{-4} + 10 - 4$ $\alpha(K) = 1.010 \times 10^{-5}$ 14: $\alpha(L) = 0.83 \times 10^{-7}$ 14:				
		4004.9 25		0.0	5/2			1.90×10 5	$\alpha(\mathbf{N}) = 1.010 \times 10^{-17} I9$ $\alpha(\mathbf{M}) = 1.382 \times 10^{-7} I9$ $\alpha(\mathbf{N}) = 4.26 \times 10^{-9} 6; \ \alpha(\mathbf{IPF}) = 0.001953 \ 27$ $\mathbf{E}_{\gamma}: \text{ from } (\mathbf{d},^{3}\mathbf{He\gamma}). \text{ Other: } 4804 \ 4 \text{ from } (\mathbf{n},\mathbf{n'\gamma}).$				
4810.20	(1/2 to 7/2)	4810.00 ^{&}	100	0.0	3/2-								
4838.50		4838.30 ^{&}	100	0.0	3/2-								
4869.85	(1/2 to 7/2)	3457.62 ^X 3	66 ^{&} 6	1412.124	5/2-				E_{γ} : other: 3458 3 from $(n,n'\gamma)$.				
4010.0	$(12/2^{+} t_{2}, 10/2^{+})$	3907.58 ^{°°} 3	100 × 8	962.145	$5/2^{-}$				E _{γ} : other: 3907 <i>3</i> from (n,n' γ).				
4919.0	$(13/2^{+} \text{ to } 19/2^{+})$ $5/2^{-} 7/2^{-}$	421.4 3 2874 01	$100 \\ 100 \\ 100 \\ 10$	449/.00	1//2 ⁻ 5/2 ⁻				E_{γ} : nom (α ,p γ).				
4733.40	5/2 ,1/2	2944.05 ^{&} 4955.19 ^{&}	86 ^{&} 10 35 ^{&} 7	2081.32 2012.274 0.0	3/2 ⁻ 3/2 ⁻								

 $^{63}_{29}$ Cu₃₄-47

From ENSDF

 $^{63}_{29}\mathrm{Cu}_{34}$ -47

Т

	Adopted Levels, Gammas (continued)													
	γ (⁶³ Cu) (continued)													
E_i (level)	J_i^{π}	E _γ ‡	Ι _γ ‡	E_f	\mathbf{J}_f^{π}	Mult.#	δ#	α^{\dagger}	Comments					
5007.11	(19/2+)	510.0 <i>1</i>	100	4497.65	17/2+				E_{γ} : from (¹⁶ O, α p γ).					
5016.45	(1/2 to 7/2)	4054.17 <mark>&</mark>	100	962.145	5/2-									
5053.0	(1/2 to 7/2)	5052.8 <mark>&</mark>	100	0.0	3/2-									
5073.47	(1/2 to 7/2)	5073.25 <mark>&</mark>	100	0.0	3/2-									
5101.18	(1/2 to 7/2)	5100.96 <mark>&</mark>	100	0.0	3/2-									
5139.6	(1/2 to 7/2)	5139.4 <mark>&</mark>	100	0.0	3/2-				E_{γ} : other: 5135 4 from $(n,n'\gamma)$.					
5161.19	$(1/2 \text{ to } 7/2)^{-}$	5160.96 ^{&}	100	0.0	3/2-									
5225.5 5253	(1/2 to 7/2)	5225.3 ^{&} 5253 4	100	$\begin{array}{c} 0.0\\ 0.0\end{array}$	3/2 ⁻ 3/2 ⁻									
5273.75	(1/2 to 7/2)	5273.51 <mark>&</mark>	100	0.0	3/2-									
5292 5304.3	(3/2 ⁻ ,5/2,7/2 ⁻)	5292 <i>4</i> 3977 <i>3</i> 5304 <i>4</i>		0.0 1326.014 0.0	3/2 ⁻ 7/2 ⁻ 3/2 ⁻									
5311.95	(1/2 to 7/2)	5311.71 <mark>&</mark>	100	0.0	3/2-									
5318.12		821.0 <i>1</i>	100	4497.65	17/2+				E_{γ} : from (¹⁶ O, $\alpha p\gamma$).					
5335.3	$(1/2^+)$	3323.9 <mark>&</mark>	100	2012.274	3/2-									
5358.6	(19/2)+	860.6 1	100	4497.65	17/2+	M1+E2	-0.32 +20-40	0.000311 21	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000280 \ 19; \ \alpha(\mathbf{L}) = 2.77 \times 10^{-5} \ 19; \\ &\alpha(\mathbf{M}) = 3.89 \times 10^{-6} \ 27 \\ &\alpha(\mathbf{N}) = 1.19 \times 10^{-7} \ 8 \\ &\mathbf{B}(\mathbf{M}1)(\mathbf{W}.\mathbf{u}.) = 0.039 \ +7 - 15; \ \mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) = 9 \ +22 - 8 \\ &\mathbf{E}_{\gamma}: \ \text{from} \ (^{18}\mathbf{O}, \alpha \mathbf{p}2n\gamma). \ \text{Other:} \ 860.8 \ 2 \ \text{from} \ (\alpha, \mathbf{pn\gamma}). \\ &\mathbf{Mult.}, \delta: \ \mathbf{D} + \mathbf{Q} \ \text{and} \ \delta \ \text{from} \ \gamma(\theta) \ \text{in} \ (\alpha, \mathbf{pn\gamma}) \ \text{and} \\ &\gamma\gamma(\mathbf{DCO}) \ \text{in} \ (^{18}\mathbf{O}, \alpha \mathbf{pn\gamma}); \ \mathbf{E}1 + \mathbf{M2} \ \text{ruled out by RUL.} \end{aligned}$					
5366.07 5401.8	(1/2 to 7/2)	5365.83 ^{&} 3854 <i>3</i> 3990 <i>3</i>	100	0.0 1547.109 1412.124	3/2 ⁻ 3/2 ⁻ 5/2 ⁻				E_{γ} : other: 5362 4 from $(n,n'\gamma)$.					
5413.1	(17/2 ⁺)	836.1 <i>3</i>	100	4576.70	15/2+	(M1+E2)	-0.25 +10-30		 E_γ: weighted average of 835.7 <i>3</i> from (¹⁸O,αp2nγ) and 836.3 <i>2</i> from (α,pnγ). Mult,δ: D+Q from γ(θ) in (α,pnγ); M1+E2 is more likely. 					
5542.7 5566		4580.4 ^{&} 4604 <i>4</i>	100	962.145 962.145	5/2 ⁻ 5/2 ⁻									
5571.36	(1/2 to 7/2)	4159.09 <mark>&</mark>	100	1412.124	5/2-									
5579.30	(1/2 to 7/2)	5579.04 <mark>&</mark>	100	0.0	3/2-									
5591.62	(1/2 to 7/2)	5591.35 <mark>&</mark>	100	0.0	3/2-									
5602.0	(1/2 to 7/2)	4932.1 ^{&}	100	669.724	$1/2^{-}$									

 $^{63}_{29}\mathrm{Cu}_{34}$ -48

L

From ENSDF

 $^{63}_{29}$ Cu₃₄-48

					Adopted	Levels, Gar	nmas (continu	ied)
						$\gamma(^{63}Cu)$ (co	ontinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	E_{f}	J_f^{π}	Mult. [#]	α^{\dagger}	Comments
5734.8 5768.13 5797.32 5803.87 5828.33 5835 6092.78 6283.14	$\frac{1}{(1/2 \text{ to } 7/2)}$ $(21/2^+)$ $(1/2 \text{ to } 7/2)$ $(1/2 \text{ to } 7/2)$ $(5/2^-, 7/2^-)$ $(19/2^+)$	5734.5 ^{&} 1271.0 <i>1</i> 5797.03 ^{&} 5803.58 ^{&} 5828.04 ^{&} 4290 <i>4</i> 5163 <i>4</i> 6092.46 ^{&} 871.7 <i>3</i> 925.8 <i>5</i> 1707.0 <i>1</i>	100 100 100 100 100 100 22.2 9 6.8 9 13	$\begin{array}{c} 0.0\\ 4497.65\\ 0.0\\ 0.0\\ 0.0\\ 1547.109\\ 669.724\\ 0.0\\ 5413.1\\ 5358.6\\ 4576.70\\ \end{array}$	$\begin{array}{c} & & \\ 3/2^{-} \\ 17/2^{+} \\ 3/2^{-} \\ 3/2^{-} \\ 3/2^{-} \\ 1/2^{-} \\ 1/2^{-} \\ 3/2^{-} \\ (17/2^{+}) \\ (19/2)^{+} \\ 15/2^{+} \end{array}$	Q		E_{γ} : from (¹⁶ O, <i>α</i> pγ). Other: 1270.6 <i>3</i> from (¹⁸ O, <i>α</i> p2nγ). E_{γ} , I_{γ} : from (¹⁸ O, <i>α</i> p2nγ). E_{γ} , I_{γ} : from (¹⁸ O, <i>α</i> p2nγ). E_{γ} , I_{γ} : from (¹⁸ O, <i>α</i> p2nγ). E_{γ} , I_{γ} : from (¹⁶ O, <i>α</i> pγ).
6374.86 6495.5	(23/2) ⁺	1786.6 <i>3</i> 6374.51 ^{&} 726.4 <i>5</i> 1136.5 <i>3</i>	100 <i>4</i> 100 14.7 <i>30</i> 100 <i>6</i>	0.0 5768.13 5358.6	17/2 ⁺ 3/2 ⁻ (21/2 ⁺) (19/2) ⁺	D		 E_γ: unweighted average of 1786.0 <i>I</i> from (¹⁶O,αpγ), 1786.8 <i>I</i> from (¹⁸O,αp2nγ), and 1787.0 2 from (α,pnγ). I_γ: from (¹⁸O,αp2nγ). E_γ,I_γ: from (¹⁸O,αp2nγ). E_γ,I_γ: from (¹⁸O,αp2nγ).
6749.4 7073.71	(23/2+)	2252.6 5 789.7 3	100 4	4497.65 6283.14	17/2 ⁺ (19/2 ⁺)	E2	0.000483 7	$\alpha(K)=0.000434\ 6;\ \alpha(L)=4.32\times10^{-5}\ 6;\ \alpha(M)=6.07\times10^{-6}\ 9$ $\alpha(N)=1.832\times10^{-7}\ 26$ $E_{\gamma}:$ unweighted average of 790.0 <i>I</i> from (¹⁶ O, α p γ) and 789.4 <i>3</i> from (¹⁸ O, α p2n γ). $I_{\gamma}:$ from (¹⁸ O, α p2n γ).
7282.7	(1/2 to 7/2)	1715.3 5 1478.8 1916.6 1947.4 2121.5 2181.5 2209.2 2327.3 2412.8 2486.9 2530.0 2638.9 2784.2 2825.6 2862.9 2879.7	$\begin{array}{c} 7.5 \ 11 \\ 1.5 \\ 1.5 \\ 0.49 \\ 1.2 \\ 2.4 \\ 0.49 \\ 0.24 \\ 0.98 \\ 1.2 \\ 0.73 \\ 0.49 \\ 2.0 \\ 0.49 \\ 2.0 \\ 0.49 \\ 0.24 \\ 2.4 \end{array}$	5358.6 5803.87 5366.07 5335.3 5161.19 5101.18 5073.47 4955.40 4869.85 4795.77 4752.66 4643.75 4498.45 4457.02 4419.70 4403.97	$(19/2)^{+}$ $(1/2 \text{ to } 7/2)$ $(1/2 \text{ to } 7/2)$ $(1/2 \text{ to } 7/2)^{-}$ $(1/2 \text{ to } 7/2)^{-}$ $(1/2 \text{ to } 7/2)$ $(1/2 \text{ to } 7/2)^{-}$ $(1/2 \text{ to } 7/2)$ $(1/2 \text{ to } 7/2^{-})$ $(1/2 \text{ to } 7/2^{-})$ $(1/2 \text{ to } 7/2^{-})$ $(1/2^{-}, 3/2, 5/2^{-})$			E_{γ}, I_{γ} : from (¹⁸ O, α p2n γ).

 $^{63}_{29}$ Cu₃₄-49

L.

 $^{63}_{29}$ Cu₃₄-49

From ENSDF

 $\gamma(^{63}Cu)$ (continued)

E _i (level)	\mathbf{J}_i^π	E _γ ‡	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	E _i (level)	\mathbf{J}_i^{π}	E _γ ‡	Iγ [‡]	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}
7282.7	(1/2 to 7/2)	2924.2	1.5	4358.43	$(1/2^{-}, 3/2^{-})$	7282.7	(1/2 to 7/2)	7282.3	6.1	0.0	3/2-
		2927.9	0.73	4354.75	$(1/2^{-}, 3/2^{-})$	7363.94	(1/2 to 7/2)	989.07	1.5	6374.86	,
		2997.6	0.98	4285.03	5/2-,7/2-			1271.15	3	6092.78	
		3057.0	0.73	4225.59	5/2-,7/2-			1496.29	2.5	5867.63	(1/2 to 7/2)
		3137.3	0.49	4145.1	$(1/2^{-} \text{ to } 7/2^{-})$			1560.05	1	5803.87	(1/2 to 7/2)
		3149.8	0.73	4132.78	$(1/2^{-} \text{ to } 7/2^{-})$			1566.60	2	5797.32	
		3158.0	0.49	4124.61	$(1/2 \text{ to } 7/2^{-})$			1792.55	3	5571.36	(1/2 to 7/2)
		3169.4	2.4	4113.20	$(1/2^+)$			2202.71	2	5161.19	$(1/2 \text{ to } 7/2)^{-}$
		3227.8	5.4	4054.84	1/2-,3/2-			2262.72	9.5	5101.18	(1/2 to 7/2)
		3265.5	3.7	4017.08	$1/2^{-}, 3/2^{-}$			2290.43	0.5	5073.47	(1/2 to 7/2)
		3304.1	1.2	3978.47	$(1/2, 3/2, 5/2^{-})$			2408.49	2	4955.40	5/2-,7/2-
		3385.2	0.73	3897.45	$(3/2^+, 5/2^+)$			2525.39	1	4838.50	
		3497.1	0.73	3785.53	$1/2^{-}, 3/2^{-}$			2557.65	0.5	4806.23	$(1/2^+)$
		3508.2	1.7	3774.43	$(1/2, 3/2, 5/2^{-})$			2568.11	3	4795.77	$(1/2^+)$
		3563.6	2.7	3719.04	$(1/2,3/2)^+$			2611.22	4.5	4752.66	
		3635.1	2.4	3647.51	$(1/2, 3/2, 5/2^{-})$			2672.08	5	4691.80	(1/2 to 7/2)
		3701.9	2.7	3580.71	$1/2^{-}, 3/2^{-}$			2717.18	3.5	4646.70	(1/2 to 7/2)
		3713.1	1.2	3569.47				2720.13	2.5	4643.75	(1/2 to 7/2)
		3741.3	0.49	3541.3	$(1/2^{-}$ to $7/2)$			2770.99	0.5	4592.89	(1/2 to 7/2)
		3808.0	0.98	3474.59	5/2+			2832.48	3.5	4531.39	(1/2 to 7/2)
		3817.6	3.7	3465.00	$1/2^{-}, 3/2^{-}$			2858.35	4.5	4505.52	(1/2 to 7/2)
		3852.8	3.2	3429.80	$(3/2)^{-}$			2862.44	2	4501.43	(1/2 to 7/2)
		3864.4	0.49	3418.16	(1/2 to 7/2)			2865.42	4.5	4498.45	5/2-
		3878.2	2.0	3404.41	(1/2 to 7/2)			2893.09	1.5	4470.78	(1/2 to 7/2)
		3975.5	0.49	3307.03	$(3/2^+)$			2906.85	2.5	4457.02	$(1/2, 3/2, 5/2^{-})$
		3984.9	2.0	3297.62	3/2-			2960.90	3.5	4403.97	$(1/2^{-}, 3/2, 5/2^{-})$
		4182.0	3.7	3100.54	1/2-,3/2-			3005.43	5.5	4358.43	$(1/2^{-}, 3/2^{-})$
		4238.0	7.8	3044.52	$(5/2)^{-}$			3074.37	1	4289.49	1/2-,3/2-
		4305.6	2.0	2976.94	1/2-,3/2-,5/2-			3138.27	11	4225.59	5/2-,7/2-
		4393.3	2.2	2889.29	$(1/2^{-}, 3/2, 5/2^{-})$			3215.67	4.5	4148.18	$(1/2, 3/2, 5/2^{-})$
		4425.3	4.9	2857.55	$(1/2^{-}, 3/2^{-})$			3346.77	12	4017.08	1/2-,3/2-
		4502.2	2.2	2780.36	$(3/2^{-})$			3385.37	5	3978.47	$(1/2, 3/2, 5/2^{-})$
		4585.8	15	2696.69	1/2-,3/2-,5/2-			3466.39	26	3897.45	$(3/2^+, 5/2^+)$
		4772.0	0.49	2511.903	$(3/2)^+$			3589.40	0.5	3774.43	$(1/2, 3/2, 5/2^{-})$
		4785.2	7.8	2497.26	(3/2)			3623.64	14	3740.19	$(3/2,5/2)^+$
		5201.2	1.2	2081.32	5/2-			3716.31	50	3647.51	$(1/2, 3/2, 5/2^{-})$
		5220.3	3.9	2062.45	$(3/2)^{-}$			3783.11	6.5	3580.71	1/2-,3/2-
		5271.2	2.2	2012.274	3/2-			3794.35	6.5	3569.47	
		5735.3	16	1547.109	3/2-			3889.22	1	3474.59	5/2+
		5870.3	7.1	1412.124	5/2-			3945.65	1.5	3418.16	(1/2 to 7/2)
		6320.2	1.7	962.145	5/2-			3959.40	20	3404.41	(1/2 to 7/2)
		6612.6	100	669.724	1/2-			4056.77	7.5	3307.03	$(3/2^+)$

$\gamma(^{63}Cu)$	(continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ} ‡	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ} ‡	E_f	J_f^π
7363.94	(1/2 to 7/2)	4066.18 4319.26	0.5 5.5	3297.62 3044.52	3/2 ⁻ (5/2) ⁻	7400.3	1/2	3659.58 3680.73	0.21 0.64	3740.19 3719.04	$(3/2,5/2)^+$ $(1/2,3/2)^+$
		4386.84	19	2976.94	$1/2^{-}, 3/2^{-}, 5/2^{-}$			3752.25	0.21	3647.51	$(1/2,3/2,5/2^{-})$
		4585.40	2	2/80.36	(3/2)			3819.05	0.64	3580.71	1/2 ,3/2
		4007.00	1	2090.09	$\frac{1}{2}, \frac{3}{2}, \frac{3}{2}$			3850.29	1.5	2541.2	$(1/2^{-}$ to $7/2)$
		4052.74	10	2311.903	(3/2)			3025 16	0.04	3777 50	$(1/2 \ 10 \ 1/2)$ $5/2^+$
		5301 52	100	2062.45	$(3/2)^{-}$			3934 75	0.21	3465.00	$\frac{3}{2}$ $\frac{1}{2}$ $\frac{3}{2}$
		5352.42	21	2012.274	3/2-			3969.95	0.85	3429.80	$(3/2)^{-}$
		5816.54	36	1547.109	$3/2^{-}$			3995.33	2.3	3404.41	(1/2 to 7/2)
		6693.83	44	669.724	$1/2^{-}$			4092.71	0.21	3307.03	$(3/2^+)$
		7363.48	1	0.0	3/2-			4102.12	0.21	3297.62	3/2-
7400.3	1/2	1595.99	0.21	5803.87	(1/2 to 7/2)			4355.20	0.64	3044.52	$(5/2)^{-}$
		1665.1	0.43	5734.8	(1/2 to 7/2)			4510.42	0.85	2889.29	$(1/2^{-}, 3/2, 5/2^{-})$
		2126.09	0.21	5273.75	(1/2 to 7/2)			4542.43	1.3	2857.55	$(1/2^{-}, 3/2^{-})$
		2326.36	0.21	5073.47	(1/2 to 7/2)			4619.34	0.21	2780.36	$(3/2^{-})$
		2346.8	0.43	5053.0	(1/2 to 7/2)			4682.8	0.21	2717.04	3/2-,5/2-
		2444.43	0.64	4955.40	5/2-,7/2-			4703.00	2.6	2696.69	1/2-,3/2-,5/2-
		2529.98	0.21	4869.85	(1/2 to 7/2)			4718.1	0.43	2682.45	$(1/2^-, 3/2^-)$
		2589.62	0.64	4810.20	(1/2 to 7/2)			4863.48	2.1	2535.83	$5/2^{-}$
		2593.59	0.21	4806.23	$(1/2^+)$			4890.68	3.2	2511.903	$(3/2)^{+}$
		2604.05	0.64	4/95.//	$(1/2^{+})$ (1/2 to 7/2)			4902.42	0.21	2497.20	(3/2)
		2010.08	0.21	4/89.14	(1/2 to 7/2)			5337.45	0.21	2050.46	$\frac{3}{2}$
		2708.02	0.45	4091.80	(1/2 to 7/2) (1/2 to 7/2)			5388 36	0. 4 5 6.6	2002.45	(3/2) $3/2^{-}$
		2806.92	0.85	4592.89	(1/2 to 7/2) (1/2 to 7/2)			5852 48	8.9	1547 109	$3/2^{-}$
		2868.42	0.64	4531.39	(1/2 to 7/2) (1/2 to 7/2)			5987.45	3.4	1412.124	5/2-
		2894.29	0.85	4505.52	(1/2 to 7/2)			6437.38	0.43	962.145	5/2-
		2929.03	0.43	4470.78	(1/2 to 7/2)			6729.77	53	669.724	1/2-
		2980.10	0.43	4419.70	$(1/2 \text{ to } 7/2^{-})$			7399.41	100	0.0	3/2-
		2996.83	0.21	4403.97	$(1/2^-, 3/2, 5/2^-)$	7475.27	1/2	1671.38	1.2	5803.87	(1/2 to 7/2)
		3017.69	0.85	4382.11	(1/2 to 7/2)			1883.62	1.2	5591.62	(1/2 to 7/2)
		3110.31	0.43	4289.49	1/2-,3/2-			1895.94	7.7	5579.30	(1/2 to 7/2)
		3114.77	1.1	4285.03	5/2-,7/2-			2109.16	1.2	5366.07	(1/2 to 7/2)
		3174.20	0.21	4225.59	5/2-,7/2-			2139.9	1.5	5335.3	$(1/2^+)$
		3254.46	2.6	4145.1	$(1/2^{-} \text{ to } 7/2^{-})$			2163.28	1.2	5311.95	(1/2 to 7/2)
		3275.18	0.21	4124.61	$(1/2 \text{ to } 7/2^{-})$			2201.48	2.4	5273.75	(1/2 to 7/2)
		3344.95	0.43	4054.84	$1/2$, $3/2^{-1}$			2314.03	1.2	5161.19	$(1/2 \text{ to } 7/2)^{-1}$
		3382.70 2502.22	0.64	4017.08	$\frac{1}{2}, \frac{3}{2}$			2401.73	2.1	5016.45	(1/2 to 1/2) (1/2 to 7/2)
		2514 10	2.1	2005 60	$(3/2^{-}, 3/2^{+})$			2438.11 2605.26	0.88	JU10.43	(1/2 to 1/2) (1/2 to 7/2)
		3625 34	0.45	3774 43	$(3/2^{-})$ $(1/2,3/2,5/2^{-})$			2668 98	2.7 59	4806 23	$(1/2 \ 10 \ 1/2)$ $(1/2^+)$
		3625.34	0.21	3774.43	(1/2,3/2,5/2)			2668.98	5.9	4806.23	$(1/2^+)$

Adopted Levels, Gammas (continued)

 $\gamma(^{63}Cu)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Comments
7475.27	1/2	2686.07	0.88	4789.14	(1/2 to 7/2)	
	-/-	2831.45	5	4643.75	(1/2 to 7/2)	
		2835.2	0.88	4640.0	(1/2 to 7/2)	
		2882.31	3.8	4592.89	(1/2 to 7/2)	
		2943.81	2.7	4531.39	(1/2 to 7/2)	
		2958.05	1.8	4517.15	$(1/2, 3/2, 5/2^{-})$	
		2973.77	1.8	4501.43	(1/2 to 7/2)	
		3004.41	1.5	4470.78	(1/2 to 7/2)	
		3018.17	2.7	4457.02	$(1/2, 3/2, 5/2^{-})$	
		3072.22	1.8	4403.97	$(1/2^{-}, 3/2, 5/2^{-})$	
		3120.44	1.2	4354.75	$(1/2^{-}, 3/2^{-})$	
		3185.69	2.1	4289.49	1/2-,3/2-	
		3249.59	1.5	4225.59	5/2-,7/2-	
		3329.85	5	4145.1	$(1/2^{-} \text{ to } 7/2^{-})$	
		3350.56	0.59	4124.61	$(1/2 \text{ to } 7/2^{-})$	
		3361.97	0.59	4113.20	$(1/2^+)$	
		3420.33	0.59	4054.84	1/2-,3/2-	
		3496.70	0.88	3978.47	$(1/2,3/2,5/2^{-})$	
		3577.71	2.9	3897.45	$(3/2^+, 5/2^+)$	
		3589.48	0.88	3885.68	$(5/2^+)$	
		3689.62	11	3785.53	1/2-,3/2-	
		3700.72	0.59	3774.43	(1/2,3/2,5/2)	
		3/56.11	0.59	3/19.04	$(1/2, 3/2)^{+}$	
		3827.64	5.9	364/.51	(1/2,3/2,5/2)	
		3905.67	1.5	3309.47	5/2+	
		4000.54	2.1	34/4.39	$\frac{3}{2}$	
		4043.33	2.9	3429.80	(3/2) $(2/2^{+})$	
		4108.09	9.1	3100 54	(3/2) $1/2^{-} 3/2^{-}$	
		4574.57	53	2880.20	$(1/2^{-} 3/2 5/2^{-})$	
		4588.0	5.5 6.5	2009.29	(1/2, 3/2, 3/2) $(3/2^{-})$	
		4793 5	24	2682.45	(3/2) $(1/2^{-} 3/2^{-})$	
		4964.06	5.9	2511 903	$(1/2, 3/2)^+$	
		4977 80	19	2497.26	(3/2)	
		5412.83	12	2062.45	$(3/2)^{-}$	
		5463 74	0.88	2012 274	$3/2^{-}$	
		5927.86	35	1547.109	$3/2^{-}$	
		6805.15	3.2	669.724	$1/2^{-}$	
		7474.79	100	0.0	3/2-	
7479.2		2121.8 5		5358.6	$(19/2)^+$	E_{γ} : from (¹⁸ O, α p2n γ).
7513.2	(3/2)	4412.5	19	3100.54	1/2-,3/2-	
		4623.7	7	2889.29	$(1/2^{-}, 3/2, 5/2^{-})$	

Adopted Levels, Gammas (continued)

$\gamma(^{63}Cu)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E _γ ‡	I_{γ}^{\ddagger}	E_f	J_f^π	Mult. [#]	Comments
7513.2	(3/2)	4732.7	16	2780.36	$(3/2^{-})$		
101012	(0/=)	5015.7	14	2497.26	(3/2)		
		5965.8	47	1547.109	3/2-		
		6100.8	9.3	1412.124	5/2-		
		6550.7	4.7	962.145	5/2-		
		6843.1	100	669.724	1/2-	D+Q	δ : -5 2 or +0.3 <i>I</i> from (p, γ):E=res.
		7512.7	16	0.0	3/2-		
7532.20	1/2	1728.31	0.79	5803.87	(1/2 to 7/2)		
		1940.55	0.79	5591.62	(1/2 to 7/2)		
		2258.41	0.53	5273.75	(1/2 to 7/2)		
		2306.7	2.1	5225.5	(1/2 to 7/2)		
		2370.96	0.53	5161.19	(1/2 to 7/2)		
		2392.6	1.3	5139.6	(1/2 to 7/2)		
		2002.29	0.79	4809.83	$(1/2 \ 10 \ 1/2)$		
		2723.91	0.35	4000.25	(1/2) (1/2) to $7/2$		
		2743.00	0.79	4709.14	(1/2 to 7/2)		
		2003.43	0.26	4040.70	(1/2 to 7/2) (1/2 to 7/2)		
		3000 73	0.20	4531 39	(1/2 to 7/2)		
		3014.97	2.1	4517.15	$(1/2, 3/2, 5/2^{-})$		
		3030.69	0.53	4501.43	(1/2 to 7/2)		
		3033.67	1.6	4498.45	5/2-		
		3075.10	2.4	4457.02	$(1/2, 3/2, 5/2^{-})$		
		3129.15	1.1	4403.97	$(1/2^-, 3/2, 5/2^-)$		
		3150.01	0.26	4382.11	(1/2 to 7/2)		
		3173.68	2.1	4358.43	$(1/2^{-}, 3/2^{-})$		
		3177.36	0.53	4354.75	$(1/2^{-}, 3/2^{-})$		
		3242.62	5.5	4289.49	$1/2^{-}, 3/2^{-}$		
		3247.08	1.1	4285.03	5/2-,7/2-		
		3306.52	1.8	4225.59	5/2-,7/2-		
		3386.77	1.3	4145.1	$(1/2^{-} \text{ to } 7/2^{-})$		
		3399.32	0.26	4132.78	$(1/2^{-} \text{ to } 7/2^{-})$		
		3515.02	1.8	4017.08	$1/2^{-}, 3/2^{-}$		
		3634.64	1.1	3897.45	$(3/2^+, 5/2^+)$		
		3646.41	1.1	3883.08	$(5/2^{-})$		
		3003.34	0.53	3800.33 3785 52	(1/2 10 1/2) $1/2^{-} 3/2^{-}$		
		3757 65	2.6	3771 12	$(1/2, 3/2, 5/2^{-})$		
		3791.03	2.0 0.79	3740 10	$(1/2, 3/2, 3/2)^+$		
		3813.04	1.6	3719.04	$(1/2, 3/2)^+$		
		3884 56	3.2	3647 51	$(1/2, 3/2, 5/2^{-})$		
		3951.36	0.53	3580.71	$1/2^{-}.3/2^{-}$		
		2721.20	0.00	2200.71	-1- ,512		

$\gamma(^{63}Cu)$	(continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	J_f^{π}	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}
7532.20	1/2	3962.60	1.1	3569.47		7607.80	(1/2)	2967.7	0.29	4640.0	(1/2 to 7/2)
		3990.8	1.1	3541.3	$(1/2^{-} \text{ to } 7/2)$			3014.83	0.86	4592.89	(1/2 to 7/2)
		4057.47	1.6	3474.59	5/2+			3076.33	0.29	4531.39	(1/2 to 7/2)
		4067.06	1.8	3465.00	$1/2^{-}, 3/2^{-}$			3102.20	3.1	4505.52	(1/2 to 7/2)
		4102.26	0.53	3429.80	(3/2)			3106.29	1.1	4501.43	(1/2 to 7/2)
		4113.90	2.9	3418.16	(1/2 to 7/2)			3136.94	0.86	4470.78	(1/2 to 7/2)
		4127.65	0.53	3404.41	(1/2 to 1/2)			3150.70	1.4	4457.02	(1/2, 3/2, 5/2)
		4225.02	1.0	3307.03	$(3/2^{+})$			3188.01	0.86	4419.70	(1/2 to 1/2)
		4234.43	2.0	3297.02	$\frac{3}{2}$			3204.74	0.29	4403.97	(1/2, 3/2, 5/2)
		4451.49	1.8	3100.54	1/2, $3/2$			3249.28	0.80	4358.43	(1/2, 3/2) (1/2, 2/2)
		4467.31	0.20	2076.04	(3/2) $1/2^{-} 2/2^{-} 5/2^{-}$			3232.90	0.29	4334.73	(1/2, 3/2)
		4555.08	1.1	2970.94	1/2, $3/2$, $3/2(1/2^{-}, 2/2, 5/2^{-})$			2222 68	0.29	4289.49	1/2, $3/25/2^{-}, 7/2^{-}$
		4044.9	2.0	2009.29	(1/2, 3/2, 3/2)			3322.00	1.1	4265.05	$\frac{3/2}{(1/2^{-} \text{ to } 7/2^{-})}$
		4074.74	1.1	2808 14	(1/2, 3/2) $3/2^{-}$			3710.23	0.57	3807.45	$(1/2 \ 10 \ 1/2)$ $(3/2^+ \ 5/2^+)$
		4751.65	7.4	2780.36	$(3/2^{-})$			3722.00	0.80	3885.68	$(5/2^+)$
		4815 1	0.53	2717.04	$(3/2)^{-}$ $(3/2)^{-}$			3833.25	2.6	3774 43	$(3/2^{-})$ $(1/2^{-}3/2^{-})$
		4850.4	13	2682.45	$(1/2^{-} 3/2^{-})$			3867.48	1.4	3740 19	$(1/2, 5/2, 5/2)^+$
		5020.99	0.53	2511 903	$(3/2)^+$			3888.63	4 3	3719.04	$(1/2, 3/2)^+$
		5034.72	19	2497.26	(3/2)			3960.16	0.57	3647.51	$(1/2,3/2,5/2^{-})$
		5127.3	0.53	2404.77	7/2-			4026.95	0.29	3580.71	$1/2^{-}.3/2^{-}$
		5195.42	0.26	2336.48	5/2-			4142.65	1.4	3465.00	$1/2^{-}.3/2^{-}$
		5450.63	1.8	2081.32	5/2-			4189.49	2.3	3418.16	(1/2 to 7/2)
		5469.76	11	2062.45	$(3/2)^{-}$			4310.02	1.4	3297.62	3/2-
		5984.79	13	1547.109	3/2-			4507.09	1.4	3100.54	$1/2^{-}, 3/2^{-}$
		6119.76	2.6	1412.124	5/2-			4563.10	5.7	3044.52	$(5/2)^{-}$
		6204.86	7.9	1326.014	7/2-			4630.68	1.7	2976.94	1/2-,3/2-,5/2-
		6569.69	26	962.145	5/2-			4750.34	0.57	2857.55	$(1/2^{-}, 3/2^{-})$
		6862.08	100	669.724	1/2-			4827.24	0.29	2780.36	$(3/2^{-})$
		7531.72	4.7	0.0	3/2-			4910.91	6.3	2696.69	1/2-,3/2-,5/2-
7607.80	(1/2)	1740.14	0.86	5867.63	(1/2 to 7/2)			4926.0	1.1	2682.45	$(1/2^{-}, 3/2^{-})$
		1779.44	0.29	5828.33	(1/2 to 7/2)			5096.58	2.6	2511.903	$(3/2)^+$
		1803.90	0.29	5803.87	(1/2 to 7/2)			5110.32	13	2497.26	(3/2)
		2036.41	0.86	5571.36	(1/2 to 7/2)			5545.35	2.9	2062.45	$(3/2)^{-}$
		2446.56	2.0	5161.19	$(1/2 \text{ to } 7/2)^{-}$			6060.38	17	1547.109	3/2-
		2506.57	1.1	5101.18	(1/2 to 7/2)			6937.67	100	669.724	1/2-
		2554.7	0.86	5053.0	(1/2 to 7/2)			7607.31	94	0.0	3/2-
		2591.29	0.86	5016.45	(1/2 to 7/2)	7712.2	(1/2 to 7/2)	1908.3	0.19	5803.87	(1/2 to 7/2)
		2652.34	1.1	4955.40	5/2, $1/2$			2120.5	0.58	5542.7	(1/2 to 1/2)
		2/31.09	0.29	48/0.05	(1/2 to 1/2)			2169.5	0.19	5542.7	(1/2, -7/2)
		2/3/.89	0.86	4869.85	(1/2 to 1/2)			2400.2	0.19	5311.95	(1/2 to 1/2)
		2901.03	0.80	4040.70	(1/2 to 1/2)			2438.4	0.58	5213.15	(1/2 to 1/2)

$\gamma(^{63}Cu)$	(continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	Iγ [‡]	\mathbf{E}_{f}	${ m J}_f^\pi$	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	\mathbf{E}_{f}	${ m J}_f^\pi$
7712.2	(1/2 to 7/2)	2551.0	0.96	5161.19	$(1/2 \text{ to } 7/2)^{-}$	7712.2	(1/2 to 7/2)	4995.1	0.19	2717.04	3/2-,5/2-
		2572.5	0.77	5139.6	(1/2 to 7/2)			5015.3	1.2	2696.69	1/2-,3/2-,5/2-
		2638.7	0.96	5073.47	(1/2 to 7/2)			5030.4	1.2	2682.45	$(1/2^{-}, 3/2^{-})$
		2659.1	0.39	5053.0	(1/2 to 7/2)			5214.7	3.3	2497.26	(3/2)
		2756.7	1.4	4955.40	5/2-,7/2-			5375.4	0.19	2336.48	5/2-
		2835.5	0.58	4876.65	(1/2 to 7/2)			5630.6	0.39	2081.32	5/2-
		2842.3	0.39	4869.85	(1/2 to 7/2)			5649.7	1.2	2062.45	$(3/2)^{-}$
		2905.9	1.4	4806.23	$(1/2^+)$			5700.7	5.2	2012.274	3/2-
		2916.4	0.77	4795.77	$(1/2^+)$			6164.8	8.1	1547.109	3/2-
		2923.0	0.58	4789.14	(1/2 to 7/2)			7042.1	2.7	669.724	1/2-
		3020.3	0.39	4691.80	(1/2 to 7/2)			7711.7	100	0.0	3/2-
		3065.4	0.58	4646.70	(1/2 to 7/2)	7732.60	(1/2)	2130.6	1.3	5602.0	(1/2 to 7/2)
		3072.1	0.39	4640.0	(1/2 to 7/2)			2140.94	1.7	5591.62	(1/2 to 7/2)
		3210.7	0.19	4501.43	(1/2 to 7/2)			2366.48	1.3	5366.07	(1/2 to 7/2)
		3241.3	0.96	4470.78	(1/2 to 7/2)			2397.3	2.1	5335.3	$(1/2^+)$
		3255.1	0.39	4457.02	$(1/2, 3/2, 5/2^{-})$			2420.60	4.2	5311.95	(1/2 to 7/2)
		3309.1	0.19	4403.97	$(1/2^{-}, 3/2, 5/2^{-})$			2458.80	0.83	5273.75	(1/2 to 7/2)
		3353.7	1.2	4358.43	$(1/2^{-}, 3/2^{-})$			2659.07	0.83	5073.47	(1/2 to 7/2)
		3486.5	0.39	4225.59	5/2-,7/2-			2855.88	1.3	4876.65	(1/2 to 7/2)
		3563.9	0.58	4148.18	$(1/2, 3/2, 5/2^{-})$			2862.68	2.5	4869.85	(1/2 to 7/2)
		3566.8	0.77	4145.1	$(1/2^{-} \text{ to } 7/2^{-})$			2922.33	1.3	4810.20	(1/2 to 7/2)
		3579.3	0.39	4132.78	$(1/2^{-} \text{ to } 7/2^{-})$			2936.76	0.42	4795.77	$(1/2^+)$
		3587.5	4.2	4124.61	$(1/2 \text{ to } 7/2^{-})$			2943.39	3.3	4789.14	(1/2 to 7/2)
		3598.9	1.2	4113.20	$(1/2^+)$			3088.77	1.3	4643.75	(1/2 to 7/2)
		3657.3	0.77	4054.84	1/2-,3/2-			3092.5	1.3	4640.0	(1/2 to 7/2)
		3695.0	0.19	4017.08	$1/2^{-}, 3/2^{-}$			3139.63	0.42	4592.89	(1/2 to 7/2)
		3733.6	0.39	3978.47	$(1/2, 3/2, 5/2^{-})$			3226.99	2.5	4505.52	(1/2 to 7/2)
		3814.6	1.5	3897.45	$(3/2^+, 5/2^+)$			3231.08	0.83	4501.43	(1/2 to 7/2)
		3926.5	0.58	3785.53	1/2-,3/2-			3234.06	0.83	4498.45	5/2-
		3937.6	0.19	3774.43	$(1/2, 3/2, 5/2^{-})$			3261.73	1.7	4470.78	(1/2 to 7/2)
		3993.0	0.39	3719.04	$(1/2,3/2)^+$			3312.81	2.1	4419.70	$(1/2 \text{ to } 7/2^{-})$
		4064.6	0.19	3647.51	$(1/2, 3/2, 5/2^{-})$			3329.54	0.83	4403.97	$(1/2^-, 3/2, 5/2^-)$
		4131.4	0.96	3580.71	1/2-,3/2-			3350.39	0.83	4382.11	(1/2 to 7/2)
		4282.2	7.9	3429.80	$(3/2)^{-}$			3374.07	1.3	4358.43	$(1/2^-, 3/2^-)$
		4293.9	3.1	3418.16	(1/2 to 7/2)			3377.75	0.83	4354.75	$(1/2^{-}, 3/2^{-})$
		4307.6	5.6	3404.41	(1/2 to 7/2)			3443.01	1.3	4289.49	$1/2^{-}, 3/2^{-}$
		4405.0	0.77	3307.03	$(3/2^+)$			3506.91	0.42	4225.59	5/2-,7/2-
		4414.4	0.58	3297.62	3/2-			3584.31	1.7	4148.18	$(1/2, 3/2, 5/2^{-})$
		4611.5	3.9	3100.54	1/2-,3/2-			3599.71	2.9	4132.78	$(1/2^{-} \text{ to } 7/2^{-})$
		4667.5	6.4	3044.52	$(5/2)^{-}$			3607.88	0.83	4124.61	$(1/2 \text{ to } 7/2^{-})$
		4735.1	14	2976.94	1/2-,3/2-,5/2-			3619.29	2.1	4113.20	$(1/2^+)$
		4854.7	0.58	2857.55	$(1/2^-, 3/2^-)$			3677.65	2.5	4054.84	1/2 ⁻ ,3/2 ⁻

⁶³₂₉Cu₃₄-55

E _i (level)	\mathbf{J}_i^{π}	E _γ ‡	Iγ‡	\mathbf{E}_{f}	J_f^π	E _i (level)	\mathbf{J}_i^{π}	E _γ ‡	I_{γ}	\mathbf{E}_{f}	${ m J}_f^\pi$
7732.60	(1/2)	3715.40	2.1	4017.08	$1/2^{-}.3/2^{-}$	7745.37	(1/2 to 7/2)	2956.16	1.3	4789.14	(1/2 to 7/2)
	(-1-)	3754.01	2.9	3978.47	$(1/2.3/2.5/2^{-})$		(-1= :: :1=)	2992.63	0.94	4752.66	(-/ //-)
		3835.03	7.1	3897.45	$(3/2^+, 5/2^+)$			3101.54	0.94	4643.75	(1/2 to 7/2)
		3846.79	2.9	3885.68	$(5/2^+)$			3105.3	2.5	4640.0	(1/2 to 7/2)
		3946.94	4.2	3785.53	$1/2^{-},3/2^{-}$			3152.40	1.6	4592.89	(1/2 to 7/2)
		3958.04	0.83	3774.43	$(1/2, 3/2, 5/2^{-})$			3213.89	1.3	4531.39	(1/2 to 7/2)
		3992.27	3.8	3740.19	$(3/2, 5/2)^+$			3239.76	0.63	4505.52	(1/2 to 7/2)
		4084.95	2.1	3647.51	$(1/2, 3/2, 5/2^{-})$			3243.85	0.63	4501.43	(1/2 to 7/2)
		4151.74	0.83	3580.71	$1/2^{-}, 3/2^{-}$			3246.83	0.94	4498.45	5/2-
		4162.98	2.1	3569.47				3274.50	1.3	4470.78	(1/2 to 7/2)
		4314.28	3.3	3418.16	(1/2 to 7/2)			3288.26	0.63	4457.02	$(1/2, 3/2, 5/2^{-})$
		4328.03	2.1	3404.41	(1/2 to 7/2)			3325.58	1.3	4419.70	$(1/2 \text{ to } 7/2^{-})$
		4425.40	1.7	3307.03	$(3/2^+)$			3342.31	2.8	4403.97	$(1/2^-, 3/2, 5/2^-)$
		4631.88	5	3100.54	$1/2^{-}, 3/2^{-}$			3363.16	1.6	4382.11	(1/2 to 7/2)
		4687.89	0.42	3044.52	$(5/2)^{-1}$			3386.84	0.63	4358.43	$(1/2^{-}, 3/2^{-})$
		4755.47	0.42	2976.94	1/2-,3/2-,5/2-			3390.52	2.8	4354.75	$(1/2^{-}, 3/2^{-})$
		4843.11	2.9	2889.29	$(1/2^{-}, 3/2, 5/2^{-})$			3455.78	0.63	4289.49	$1/2^{-}, 3/2^{-}$
		4875.13	1.3	2857.55	$(1/2^{-}, 3/2^{-})$			3519.67	3.8	4225.59	5/2-,7/2-
		4952.03	1.7	2780.36	$(3/2^{-})$			3597.08	4.4	4148.18	$(1/2, 3/2, 5/2^{-})$
		5035.69	2.5	2696.69	1/2-,3/2-,5/2-			3612.48	2.2	4132.78	$(1/2^{-} \text{ to } 7/2^{-})$
		5221.37	18	2511.903	$(3/2)^+$			3620.65	0.94	4124.61	$(1/2 \text{ to } 7/2^{-})$
		5235.11	15	2497.26	(3/2)			3766.78	3.4	3978.47	$(1/2, 3/2, 5/2^{-})$
		5670.14	38	2062.45	$(3/2)^{-}$			3847.79	1.6	3897.45	$(3/2^+, 5/2^+)$
		5721.05	13	2012.274	3/2-			3859.56	1.3	3885.68	$(5/2^+)$
		6185.17	100	1547.109	3/2-			3959.71	1.6	3785.53	1/2-,3/2-
		6320.14	0.42	1412.124	5/2-			3970.81	2.2	3774.43	$(1/2, 3/2, 5/2^{-})$
		7062.45	54	669.724	1/2-			4005.04	3.4	3740.19	$(3/2, 5/2)^+$
		7732.09	83	0.0	3/2-			4026.19	1.9	3719.04	$(1/2, 3/2)^+$
7745.37	(1/2 to 7/2)	1877.71	1.9	5867.63	(1/2 to 7/2)			4097.72	1.6	3647.51	$(1/2, 3/2, 5/2^{-})$
		1941.47	0.63	5803.87	(1/2 to 7/2)			4164.51	1.6	3580.71	1/2-,3/2-
		2166.03	0.94	5579.30	(1/2 to 7/2)			4280.21	0.94	3465.00	1/2-,3/2-
		2202.6	2.2	5542.7				4315.41	1.3	3429.80	$(3/2)^{-}$
		2379.25	1.9	5366.07	(1/2 to 7/2)			4327.05	9.4	3418.16	(1/2 to 7/2)
		2410.0	1.6	5335.3	$(1/2^+)$			4438.17	1.3	3307.03	$(3/2^+)$
		2433.37	1.6	5311.95	(1/2 to 7/2)			4447.58	3.4	3297.62	3/2-
		2605.7	0.63	5139.6	(1/2 to 7/2)			4644.65	3.1	3100.54	1/2-,3/2-
		2728.86	0.63	5016.45	(1/2 to 7/2)			4768.24	3.8	2976.94	1/2-,3/2-,5/2-
		2789.90	0.94	4955.40	5/2-,7/2-			4855.88	3.4	2889.29	$(1/2^-, 3/2, 5/2^-)$
		2868.65	0.31	4876.65	(1/2 to 7/2)			4887.90	1.9	2857.55	$(1/2^{-}, 3/2^{-})$
		2875.45	1.9	4869.85	(1/2 to 7/2)			4938.6	0.31	2808.14	3/2=
		2939.07	1.3	4806.23	$(1/2^+)$			4964.80	2.5	2780.36	$(3/2^{-})$
		2949.53	0.63	4795.77	$(1/2^{+})$	l		5048.46	1.3	2696.69	1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻

E _i (level)	\mathbf{J}_i^{π}	E_{γ} ‡	I_{γ}^{\ddagger}	E_f	J_f^{π}
7745.37	(1/2 to 7/2)	5063.6	12	2682.45	$(1/2^-, 3/2^-)$
		5234.14	11	2511.903	$(3/2)^+$
		5247.88	3.8	2497.26	(3/2)
		5663.78	0.63	2081.32	5/2-
		5682.91	6.9	2062.45	$(3/2)^{-}$
		5733.82	20	2012.274	3/2-
		6197.93	31	1547.109	3/2=
		6332.90	3.4	1412.124	5/2-
		6782.83	1.9	962.145	5/2-
		7075.22	23	669.724	1/2
7770 7	(1/0 - 7/0)	//44.86	100	0.0	3/2
1112.1	(1/2 to 1/2)	2193.4	0.73	5579.30	(1/2 to 7/2)
		2699.2	0.49	50/3.4/	(1/2 to 7/2)
		2719.6	0.73	5053.0	(1/2 to 7/2)
		2756.2	1.2	5016.45	(1/2 to 7/2)
		2962.4	0.24	4810.20	(1/2 to 1/2)
		2900.4	0.49	4800.23	$(1/2^{+})$
		3020.0	0.24	4/52.00	$(1/2 t_{2} - 7/2)$
		3132.0	0.98	4040.0	(1/2 to 7/2)
		2241.2	0.75	4392.89	$(1/2 \ to \ 7/2)$
		3241.2	0.98	4351.39	$(1/2 \ 10 \ 7/2)$ $(1/2 \ 2/2 \ 5/2^{-})$
		3233.3	0.24	4517.15	(1/2, 3/2, 3/2)
		3271.2	0.24	4301.43	(1/2 to 7/2) $5/2^{-}$
		3315.6	0.24	4457 02	$(1/2 \ 3/2 \ 5/2^{-})$
		3352.9	1.5	4419 70	(1/2, 5/2, 5/2)
		3414.2	1.5	4358 43	$(1/2^{-} 3/2^{-})$
		3483.1	0.73	4289.49	$1/2^{-}.3/2^{-}$
		3487.6	0.49	4285.03	$5/2^{-}.7/2^{-}$
		3547.0	4.2	4225.59	5/27/2-
		3624.4	0.24	4148.18	$(1/2.3/2.5/2^{-})$
		3627.3	0.73	4145.1	$(1/2^{-} \text{ to } 7/2^{-})$
		3639.8	2.0	4132.78	$(1/2^{-} \text{ to } 7/2^{-})$
		3648.0	0.73	4124.61	$(1/2 \text{ to } 7/2^{-})$
		3659.4	0.24	4113.20	$(1/2^+)$
		3755.5	0.98	4017.08	$1/2^{-}, 3/2^{-}$
		3794.1	1.5	3978.47	$(1/2, 3/2, 5/2^{-})$
		3875.1	0.24	3897.45	$(3/2^+, 5/2^+)$
		3886.9	0.24	3885.68	(5/2 ⁺)
		3906.0	1.2	3866.55	$(1/2^{-} \text{ to } 7/2)$
		3987.0	5.1	3785.53	1/2-,3/2-
		3998.1	0.49	3774.43	$(1/2, 3/2, 5/2^{-})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ} ‡	I_{γ}^{\ddagger}	E_f	J_f^π	Mult. [#]	Comments
7772.7	(1/2 to 7/2)	4032.4	2.4	3740 19	$(3/2, 5/2)^+$		
,,,,	(1/2 to 1/2)	4053.5	1.7	3719.04	$(1/2, 3/2)^+$		
		4191.8	1.2	3580.71	$1/2^{-}.3/2^{-}$		
		4203.1	0.49	3569.47	1/2 ,5/2		
		4231.3	0.98	3541.3	$(1/2^{-}$ to $7/2)$		
		4298.0	0.49	3474.59	$5/2^+$		
		4307.5	0.98	3465.00	$1/2^{-}.3/2^{-}$		
		4342.7	1.5	3429.80	$(3/2)^{-}$		
		4354.4	0.49	3418.16	(1/2 to 7/2)		
		4368.1	2.0	3404.41	(1/2 to 7/2)		
		4465.5	1.2	3307.03	$(3/2^+)$		
		4474.9	0.73	3297.62	3/2-		
		4672.0	1.2	3100.54	$1/2^{-}.3/2^{-}$		
		4728.0	3.2	3044.52	$(5/2)^{-1}$		
		4795.6	0.98	2976.94	1/2-,3/2-,5/2-		
		4883.2	0.49	2889.29	$(1/2^-, 3/2, 5/2^-)$		
		4915.2	0.49	2857.55	$(1/2^{-}, 3/2^{-})$		
		4992.1	0.49	2780.36	$(3/2^{-})$		
		5055.6	0.49	2717.04	3/2-,5/2-		
		5075.8	1.7	2696.69	1/2-,3/2-,5/2-		
		5090.9	0.73	2682.45	$(1/2^{-},3/2^{-})$		
		5262.0	10	2511.903	$(3/2)^+$		
		5275.2	1.2	2497.26	(3/2)		
		5691.1	1.7	2081.32	5/2-		
		5710.2	12	2062.45	$(3/2)^{-}$		
		5761.1	2.2	2012.274	3/2-		
		6225.3	46	1547.109	3/2=		
		7102.6	16	669.724	1/2-		
		1112.2	100	0.0	3/2	_	
8364.7	$(25/2^+)$	1291.8 3	100	7073.71	$(23/2^+)$	D	E_{γ} : from (^{1o} O, α p2n γ).
8564.66	$1/2^{-}$	4790.04	12	3774.43	$(1/2, 3/2, 5/2^{-})$		
		4907.7	20	3656.8	$(1/2,3/2,5/2^{-})$		
		5103.1	17	3461.3	5/2+		
		5134.64	22	3429.80	(3/2)		
		5160.02	16	3404.41	(1/2 to 1/2)		
		5254.8	34	3309.6	$(3/2^+, 5/2^+)$		
		5272.0	26	3292.4	$(3/2^+, 5/2^+)$		
		5300.8	0.9	3203.7	(5/2)		
		5359.1 5462.97	22	3223.3 2100.54	$\frac{3}{2}$		
		J40J.8/	20	3100.34 2044 52	$\frac{1/2}{(5/2)^{-}}$		
		JJ19.88	10	2074 04	(3/2) $1/2^{-} 2/2^{-} 5/2^{-}$		
		3387.43	12	29/0.94	1/2 ,3/2 ,3/2		

From ENSDF

E _i (level)	\mathbf{J}_i^{π}	E _γ ‡	Iγ [‡]	E_f	${ m J}_f^\pi$	Mult. [#]	$\delta^{\#}$
8564.66	$1/2^{-}$	5608.2	15	2958.90			
0001100	-/-	5677.3	15	2889.29	$(1/2^{-}.3/2.5/2^{-})$		
		5867.68	23	2696.69	$1/2^{-}.3/2^{-}.5/2^{-}$		
		5885.8	45	2678.07	$(5/2^{-},7/2^{-})$		
		6028.42	3.5	2535.83	5/2-		
		6067.09	45	2497.26	(3/2)		
		6159.6	8.3	2404.77	7/2-		
		6502.11	35	2062.45	$(3/2)^{-}$		
		6553.02	17	2012.274	3/2-		
		7017.13	77	1547.109	3/2-		
		7152.10	25	1412.124	5/2-		
		7602.02	12	962.145	5/2-		
		7894.41	50	669.724	$1/2^{-}$		
		8564.04	100	0.0	3/2-		
8628.8	$(5/2^{-})$	5319.0	33	3309.6	$(3/2^+, 5/2^+)$		
		5797.2	44	2832.95	$(7/2^{-})$		
		6617.2	61	2012.274	3/2-		
		6767.1	44	1861.34	7/2-		
		7081.3	100	1547.109	3/2-		
		7216.2	50	1412.124	5/2-		
		7301.3	50	1326.014	7/2-		
		7666.2	89	962.145	5/2-		
		7958.5	11	669.724	$1/2^{-}$		
		8628.2	78	0.0	3/2-		
8639.32	$(5/2^{-})$	5329.2	55	3309.6	$(3/2^+, 5/2^+)$		
		5346.4	25	3292.4	$(3/2^+, 5/2^+)$		
		5375.2	29	3263.7	$(5/2^{-})$		
		5413.5	20	3225.3	5/2-		
		5510.0	20	3128.1	-		
		5538.2	20	3100.54	1/2-,3/2-		
		5594.2	35	3044.52	$(5/2)^{-}$		
		5751.6	15	2889.29	$(1/2^-, 3/2, 5/2^-)$		
		5858.4	26	2780.36	$(3/2^{-})$		
		5960.1	18	2678.07	$(5/2^{-}, 7/2^{-})$		
		6102.8	49	2535.83	5/2		
		6141.4	33 10	2497.26	(3/2)		
		0302.1	19	2556.48	5/2 5/2		
		033/.3	20 25	2081.52	$\frac{3}{2}$		
		03/0.3 6627 4	23 19	2002.43	(3/2)		
		0027.4 7001.5	18	2012.2/4	5/2 2/2-	D + O	0.280 ± 0.2
		7091.3	30 64	1/12/12/	5/2-	$D+Q^{*}$	$-0.36^{-1} + 9 - 2$
		1220.4	04	1412.124	5/2	D+Q"	-0.2 I

$\delta^{\#}$
.09 ^a 11
.2 ^a 1
.20 ^a 1

Adopted Levels, Gammas (continued)										
γ ⁽⁶³ Cu) (continued)										
E _i (level)	\mathbf{J}_i^{π}	E_{γ} ‡	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	δ#	Comments		
8743.7	$(3/2^{-})$	7196.1	44	1547.109	3/2-					
		7331.0	34	1412.124	5/2-					
		7780.9	100	962.145	$5/2^{-}$					
		8073.3	53	669.724	$1/2^{-}$					
		8743.0	81	0.0	$3/2^{-}$					
8746.6	$(3/2^{-})$	7783.9	100	962.145	$5/2^{-}$					
		8076.3	60	669.724	$1/2^{-}$					
		8746.0	62	0.0	3/2-					
8747.6	$(3/2^{-})$	7784.9	100	962.145	5/2-					
		8077.3	42	669.724	$1/2^{-}$					
		8747.0	27	0.0	3/2-					
8750.5	$(3/2^{-})$	7203.1	25	1547.109	3/2-					
		7787.9	10	962.145	5/2-					
		8080.3	12	669.724	1/2-					
		8750.0	100	0.0	3/2-			10		
9489.5	0.10	2416.6 5		7073.71	$(23/2^+)$			E_{γ} : from (¹ °O, α p2n γ).		
9811.2	9/2+	7302		2505.08	9/2+					
9834.2	0.10+	7325		2505.08	9/2 ⁺	0 M				
9846.2	9/2	7337		2505.08	9/2	(MI)	105	Mult.: D from asymmetry in (p, γ) :E=res; $\Delta \pi$ =no from level scheme.		
9850.3	9/21	/341		2505.08	9/21	(M1+E2)	-1.2.5	Mult.,o: D+Q from A_2 =+0.32 13, A_4 =-0.28 13 (19/9V001); $\Delta \pi$ =no from level scheme. Other: D from asymmetry=0.60 10 (1972Sz01).		
9855.5	9/2+	7348	100	2505.08	9/2+	(M1(+E2))	0.1 1	Mult., δ : D(+Q) from $\gamma(\theta)$ in (p, γ):E=res; $\Delta \pi$ =no from level scheme.		
9865		7354	100 1	2511.903	$(3/2)^+$			Mult., δ : $\delta(Q/D) = -1.26$ if J(9865)=9/2 in (p, γ):E=res.		
		7458	4.18 29	2404.77	7/2-					
		7770	5.19 29	2092.48	$7/2^{-}$					
		8001	3.31 29	1861.34	7/2-					
		8315	2.88 29	1547.109	3/2-					
		8450	4.0 4	1412.124	5/2-					
		8535	4.2 4	1326.014	7/2-					
		8900	8.8 4	962.145	5/2-					
		9193	4.90 29	669.724	$1/2^{-}$					
		9862	6.77 29	0.0	$3/2^{-}$					

[†] Additional information 2.

[‡] From $(n,n'\gamma)$ up to 5835 level and from (p,γ) :E=res for others, unless otherwise noted. Note that E γ values quoted from (p,γ) :E=res are deduced from level-energy differences with the precise level energies determined based on the precisely measured E γ values which are however not explicitly listed by the authors of the source references in (p,γ) :E=res.

[#] From $\gamma(\theta)$ in $(p,p'\gamma)$ up to 2536 level, and from $\gamma\gamma(DCO)$ and $\gamma(\text{lin pol})$ in $({}^{18}\text{O},\alpha p2n\gamma)$ above that, unless otherwise noted. RUL and measured $T_{1/2}$ where available are used to determine magnetic and electric characters of a transition where $\gamma(\text{lin pol})$ data are not available.

From ENSDF

Adopted Levels, Gammas (continued)

 $\gamma(^{63}Cu)$ (continued)

[@] From (¹⁸O,αp2nγ).
[&] From (p,γ):E=res.
^a From γ(θ) in (p,γ):E=res.
^b Placement of transition in the level scheme is uncertain.

⁶³₂₉Cu₃₄

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{63}_{29}Cu_{34}$

Level Scheme (continued)

 $^{63}_{29}Cu_{34}$

Level Scheme (continued)

Level Scheme (continued)

 $^{63}_{29}{\rm Cu}_{34}$

stable

Adopted Levels, Gammas

Level Scheme (continued)

⁶³₂₉Cu₃₄

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{63}_{29}{
m Cu}_{34}$

Level Scheme (continued)

 ${}^{63}_{29}{\rm Cu}_{34}$

Level Scheme (continued)

 $^{63}_{29}Cu_{34}$

Level Scheme (continued)

 ${}^{63}_{29}{\rm Cu}_{34}$
Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{63}_{29}{
m Cu}_{34}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

 $^{63}_{29}{
m Cu}_{34}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

 $^{63}_{29}Cu_{34}$

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

⁶³₂₉Cu₃₄

Level Scheme (continued)

Intensities: Relative photon branching from each level

 ${}^{63}_{29}{\rm Cu}_{34}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

From ENSDF

⁶³₂₉Cu₃₄-85

⁶³₂₉Cu₃₄-85

 ${}^{63}_{29}\text{Cu}_{34}$

 ${}^{63}_{29}{\rm Cu}_{34}$

Level Scheme (continued)

From ENSDF

⁶³₂₉Cu₃₄-88

⁶³₂₉Cu₃₄-88

Level Scheme (continued)

⁶³₂₉Cu₃₄

Level Scheme (continued)

Legend

⁶³₂₉Cu₃₄

⁶³₂₉Cu₃₄-91

From ENSDF

 $^{63}_{29}$ Cu₃₄-91

91

Legend

Adopted Levels, Gammas

Level Scheme (continued)

⁶³₂₉Cu₃₄