⁶²Ni(α ,t) **2013ScZZ**

		History		
Type	Author	Citation	Literature Cutoff Date	
Full Evaluation	Jun Chen	NDS 196,17 (2024)	30-Sep-2023	

Adapted from the XUNDL dataset for 2013ScZZ compiled by E. Thiagalingam and B. Singh on May 12, 2013. 2013ScZZ: E=38 MeV α beam was produced from Yale tandem accelerator of WNSL facility. Target was 219 μ g/cm² ⁶²Ni (96.5% enriched). Reaction products were momentum-analyzed with a split-pole Enge spectrograph (FWHM \approx 64 keV). Measured σ (E_d, θ). Deduced levels, J, π , spectroscopic factors from DWBA analysis. Comparison with shell-model calculations.

⁶³Cu Levels

E(level) [†]	$d\sigma/d\Omega \text{ (mb/sr)}^{\ddagger}$	E(level) [†]	$d\sigma/d\Omega \text{ (mb/sr)}^{\ddagger}$	E(level) [†]	$d\sigma/d\Omega$ (mb/sr) [‡]
0	3.66	1412	3.62	2336	0.68
670	1.21	1547	0.07	2405	0.36
962	2.94	2012	0.10	2505	5.76
1326	0.71	2062	0.24	3225	0.32

[†] Rounded values from Adopted Levels, unless otherwise noted.

[‡] Measured $\sigma(\theta)$ at 5° from 2013ScZZ. The uncertainties are estimated to be ≈4% for σ >1 mb/sr, ≈7% for 0.1< σ < 1.0 mb/sr, and ≈18% for σ <0.1 mb/sr at their respective maxima. The uncertainties arising from possible contaminants or previously unidentified states for very weak transitions could be ≈0.02 mb/sr (2013ScZZ).