⁶¹Ni(α ,pn γ),⁶²Ni(α ,p2n γ) 1980Ch28,1983Ka24

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 196,17 (2024)	30-Sep-2023

1980Ch28 (α ,pn γ): E=21-35 MeV α beams were produced from the cyclotron at IN2P3, Grenoble. Target was 2.2 mg/cm² enriched ⁶¹Ni. γ rays were detected with Ge(Li) detectors. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma(\theta)$, $\gamma(t)$, Doppler-shift attenuation. Deduced levels, J, π , T_{1/2}, γ -ray multipolarities, mixing ratios, transition strengths. Comparisons with theoretical calculations. Authors also studied ⁶³Cu using ⁶⁰Ni(α ,p γ) and ⁶³Cu(α , $\alpha'\gamma$) at E=18.5 MeV, but very limited data are reported.

1983Ka24 (α ,p2n γ): E=50 MeV α beam was produced from the Tohoku University cyclotron. Target was a 6 mg/cm² metallic foil of enriched ⁶²Ni. γ rays were detected with HPGe and Ge(Li) detectors. Measured $\gamma(\theta, H, t)$ for 342 γ from 4498 level. Deduced

 $T_{1/2}$ and g-factor for 4498 level using the time-integral perturbed angular distributions (TIPAD) method.

⁶³Cu Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	Comments
0.0	3/2-		
670.0 10	$1/2^{-}$		
962.13 14	5/2-	1.9 ps +6-3	
1327.01 15	7/2-	0.8 ps + 3 - 2	
1412.0 10	5/2-		
1861.23 14	$7/2^{-}$	1.4 ps +14-10	
2092.53 17	7/2-	1.4 ps +14–7	
2208.29 22	9/2-		
2505.63 17	9/2+	1.5 ps +3-2	
2547.54 19	9/2-		
2677.71 22	$11/2^{-}$	0.8 ps +6-2	J ^{π} : possibly yrast from feeding intensity; E2 γ to 7/2 ⁻ level.
3461.15 22	11/2+	0.2 ps +4-1	J ^{π} : J>9/2 from feeding and excitation function of decay γ ; 11/2 ⁺ from multipolarity and δ of the 956-keV γ .
4129.65 23	(13/2 ⁺)	2.3 ps +14-7	J^{π} : feeding from (15/2 ⁺) level, deexcitation to (11/2 ⁺) and 9/2 ⁺ levels implies $J=(11/2, 13/2)$; (13/2 ⁺) from E2 γ to 9/2 ⁺ level.
4155.45 23	$13/2^{+}$	3.5 ps 14	J^{π} : J>9/2 from intense feeding, E2 γ to 9/2 ⁺ level.
4497.8 <i>3</i>	$17/2^{+}$	4.1 ns <i>1</i>	J^{π} : yrast-isomeric state from intense feeding, E2 γ to 13/2 ⁺ level.
			T _{1/2} : from τ =5.9 ns <i>I</i> , weighted average of 5.9 ns <i>I</i> from (α ,p2n γ) (1983Ka24) and 61 ns 6 from (α m) (1980Ch28) using 342 γ (t)
			$\sigma = +0.184$ 12 measured using TIPAD method (1983Ka24)
4576.8.3	$(15/2^+)$	2.4 ps + 14 - 10	J^{π} : from dipole γ decays to $13/2^+$ levels and increasing excitation function.
5358.6 4	$(10/2^+)$	0.8 ps + 3 - 1	J^{π} : from enough feeding, dipole γ decay to $17/2^+$ level, and increasing excitation
		1	function.
5413.1 <i>4</i> 6284.8 <i>4</i> 6495.6 <i>11</i>	(17/2+)	>2 ps	J ^{π} : from D+Q γ decay to (15/2 ⁺) level.

[†] From a least-squares fit to γ -ray energies.

[‡] From 1980Ch28 based on deduced γ -ray multipolarities and known assignments of low-lying states.

[#] From DSAM in 1980Ch28, unless otherwise noted.

γ (⁶³Cu)

A₂ and A₄ under comments are from 1980Ch28.

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	Comments
342.3 2	48	4497.8	17/2+	4155.45	13/2+	E2	A_2 =+0.31 4; A_4 =-0.21 6 Mult., δ : δ (O/Q)=-0.12 1; M2,M3 components ruled out by RUL.

			⁶¹ Ni(a	α ,pn γ), ⁶² Ν	Ni(α,p2nγ) 1980C	h28,1983Ka24 (co	ontinued)	
γ ⁽⁶³ Cu) (continued)									
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	Comments	
364.9 2	15	1327.01	$7/2^{-}$	962.13	5/2-	D(+O)	-0.25 30	$A_2 = -0.44$ 7: $A_4 = -0.09$ 10	
413.1 [@] 2	≈23 <mark>&</mark>	2505.63	$9/2^{+}$	2092.53	7/2-			$A_2 = -0.39$ 3: $A_4 = -0.04$ 4	
421.3 2	11	4576.8	$(15/2^+)$	4155.45	$13/2^+$	D(+O)	-0.07 + 10 - 30	$A_2 = -0.365; A_4 = +0.036$	
447.1 2	4	4576.8	$(15/2^+)$	4129.65	$(13/2^+)$	M1+E2	-0.4 + 2 - 5	$A_2 = -0.75$ 5; $A_4 = -0.1$ 5	
469.4 2	10	2677.71	$11/2^{-}$	2208.29	9/2-	D(+Q)	-0.07 +10-30	$A_2 = -0.37 \ 11; \ A_4 = -0.18 \ 16$	
644.4 2	40 <mark>&</mark>	2505.63	9/2+	1861.23	$7/2^{-}$	D(+Q)	-0.05 +10-30	$A_2 = -0.32 8; A_4 = -0.02 12$	
668.5 ^{<i>a</i>} 2		670.0	1/2-	0.0	3/2-			E_{γ} : multiplet with 668.5 γ from 4130 level.	
668.5 ^{<i>a</i>} 2	10	4129.65	$(13/2^+)$	3461.15	$11/2^{+}$	D(+Q)	+0.05 20	$A_2 = -0.14 5; A_4 = -0.22 8$	
686.3 2	15	2547.54	9/2-	1861.23	7/2-	D+Q	-0.18 + 20 - 40	$A_2 = -0.43 \ 16; \ A_4 = -0.32 \ 25$	
694.3 2	19	4155.45	13/2*	3461.15	11/2+	M1+E2	-0.32 + 20 - 40	$A_2 = -0.65 \ 18; \ A_4 = -0.26 \ 25$	
/05.5 2	11	2092.53	$\frac{1}{2}$	1527.01	$\frac{1}{2}$	D(+Q)	-0.25	$A_2 = +0.20 \ 8; \ A_4 = -0.01 \ 10$	
860.8.2	12	5358.6	(17/2) $(19/2^+)$	4370.8	(15/2) $17/2^+$	D+Q M1+F2	-0.23 + 10 - 30 -0.32 + 20 - 40	$A_2 = -0.00 \ 52, \ A_4 = +0.01 \ 50$ $A_2 = -0.70 \ 7; \ A_4 = +0.13 \ 8$	
$881.3^{(0)}.2$	12	2208.20	(1)/2	1327.01	7/2-	1011 112	0.52 120 10	112- 0.70 7, 114-10.15 0	
801.5 2	29	1861 23	7/2 7/2	962.13	5/2-	$D(\pm 0)$	$\pm 0.05 \pm 10 - 20$	$\Delta_2 = -0.17.4$: $\Delta_4 = -0.02.6$	
955.5 2	29	3461.15	$\frac{11}{2^+}$	2505.63	$\frac{3}{2}^{+}$	D(1Q) D+O	-0.8 + 2 - 4	$A_2 = -1.05 \ 25; \ A_4 = +0.01 \ 22$	
962.1 2	100	962.13	5/2-	0.0	$3/2^{-}$	D(+Q)	-0.3 3	$A_2 = -0.52$ 5; $A_4 = +0.06$ 6	
1130.4 2	17	2092.53	7/2-	962.13	5/2-	M1+E2	-1.0 4	$A_2 = -0.87 9; A_4 = +0.11 8$	
1137		6495.6		5358.6	$(19/2^+)$				
1178.6 [@] 2	≈20 <mark>&</mark>	2505.63	9/2+	1327.01	$7/2^{-}$			$A_2 = +0.12 4; A_4 = +0.07 7$	
1246 [#]		2208.29	9/2-	962.13	$5/2^{-}$				
1327.0 2	76	1327.01	7/2-	0.0	3/2-	E2		A ₂ =+0.15 5; A ₄ =-0.13 9	
								Mult., δ : δ (O/Q)=-0.3 3; M2,M3	
1050 5 0	26	2/77 71	11/0-	1005 01	Z /2-	50		components ruled out by RUL.	
1350.7 2	26	2677.71	$11/2^{-}$	1327.01	1/2-	E2		$A_2 = +0.194; A_4 = -0.268$	
								Mull.,0: $\partial(O/Q) = -0.18 + 2 - 1$; M2,M3	
1412#		1412.0	5/2-	0.0	2/2-			components fulled out by ROL.	
1412	~7	1412.0 2547.54	$9/2^{-}$	962.13	5/2 5/2-			Mult $\cdot \Delta_2 > 0$	
1624.0.2	\sim / 10	4129.65	$(13/2^+)$	2505.63	$\frac{3}{2}^{+}$	(E2)		$A_2 = +0.07 \ lo: A_4 = -0.5 \ 2$	
102110 2	10	1120100	(10/=)	2000100	>/=	(22)		Mult., δ : δ (O/Q)=-0.3 +4-5 is tentative	
								based on authors' tentative	
								$J^{\pi} = (13/2^+);$ M2,M3 ruled out by	
								RUL.	
1649.8 2	59	4155.45	$13/2^{+}$	2505.63	9/2+	E2		$A_2 = +0.324; A_4 = -0.168$	
								Mult., δ : $\delta(O/Q) = -0.3 I$; M2,M3	
1787 0 2	~17	6284.8		1107 8	17/2+			$\Delta_{2} = \pm 0.21$ 6: $\Delta_{4} = \pm 0.01$ 8	
1707.0 2	~ 17	0204.0		++97.0	1//2			F_{α} : contaminated by a similar γ in	
								⁶⁰ Ni.	
1861.2 2	34	1861.23	7/2-	0.0	3/2-	E2		$A_2 = +0.27 \ 3; A_4 = +0.17 \ 6$	
								Mult., δ : δ (O/Q)=-0.1 <i>1</i> ; M2,M3	
								components ruled out by RUL.	
2093 [#]	15	2092.53	$7/2^{-}$	0.0	3/2-				

[†] From 1980Ch28. [‡] From measured $\gamma(\theta)$ in 1980Ch28, with magnetic and electric character determined based on RUL and measured T_{1/2} where available. # From authors's level scheme in Fig.8 (1980Ch28). @ Contaminated by similar γ in ⁶³Zn (1980Ch28).

⁶¹Ni(α,pnγ),⁶²Ni(α,p2nγ) 1980Ch28,1983Ka24 (continued)

 $\gamma(^{63}Cu)$ (continued)

[&] From $(\alpha, \alpha' \gamma)$ reaction (1980Ch28). ^{*a*} Multiply placed.

 $^{63}_{29}Cu_{34}$ -4

 $^{63}_{29}Cu_{34}$