History							
Type Author		Citation	Literature Cutoff Date				
Full Evaluation	Jun Chen	NDS 196,17 (2024)	30-Sep-2023				

¹⁹⁷⁶Da01: E=11.7 MeV α beam was produced from the 7.5-MV Van de Graaff accelerator at Universite Laval. Targets were 175-460 μ g/cm² self-supporting 98% enriched ⁶⁰Ni. γ rays were detected with a Ge(Li) detector and protons were detected with an annular silicon detector. Measured E γ , I γ , p $\gamma(\theta)$. Deduced levels, J, π , γ -ray branching ratios, multipolarities, mixing ratios. Comparisons with available data.

- 1979Mu08 (also 1979Mu09): E=9.5-19 MeV α beams were produced at the Oliver Lodge Laboratory. Target was 1.2 mg/cm² >99.8% enriched ⁶⁰Ni on a gold backing. γ rays were detected with an escape-suppressed spectrometer for $\gamma(\theta)$ and a three-Ge(Li) Compton polarimeter for $\gamma(\ln \text{ pol})$. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma(\theta)$, $\gamma(\ln \text{ pol})$, Doppler-shift attenuation. Deduced levels, J, π , T_{1/2}, γ -ray multipolarities, mixing ratios.
- 1973Ho21: E=10.0-12.3 MeV α beams were from the University of Pennsylvania Tandem Van de Graaff accelerator. γ rays were detected with a Ge(Li) detector. Measured E γ , Doppler-shift attenuation. Known T_{1/2} of 670 and 1547 levels are used for calibration.

⁶³Cu Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	Comments
0	3/2-		
669.5 3	$1/2^{-}$	0.215 ps 22	
962.08 21	5/2-	0.57 ps 7	
1326.37 23	7/2-	0.61 ps 6	
1411.9 <i>3</i>	5/2-	2.0 ps 3	
1546.8 4	3/2-	0.122 ps 12	
1860.72 24	7/2-	1.14 ps 28	
2011.0 5	3/2-	0.035 ps 8	
2062.6 7	$(1/2)^{-}$	0.15 ps 7	
2081.6 5	$5/2^{(-)}$		
2091.5 4	7/2-	0.24 ps 8	
2208.2 5	9/2-		
2336.5 5	5/2-		
2404.1 6	7/2-		
2505.7 3	9/2+		J ^{π} : from $\gamma(\theta)$ and linear polarization of the 645-keV decay γ .
2677.0 5	11/2-	0.58 [@] ps 15	J^{π} : from $\gamma(\theta)$ and linear polarization.
3461.8 6	11/2+	$\leq 0.42^{\textcircled{0}}$ ps	J^{π} : 11/2 from $\gamma(\theta)$, linear polarization, and yield curve of the 956-keV decay γ . 11/2 ⁻ leads to unreasonably large B(M2)(W.u.).
4155.4 7	13/2+	<0.56 [@] ps	J^{π} : 13/2 ⁺ and 9/2 ⁻ from $\gamma(\theta)$ and linear polarization of decay data. 9/2 ⁻ is unfavored considering yield curve and M2 strength.
4496.3 9	17/2+		J^{π} : 17/2 ⁺ and 13/2 from $\gamma(\theta)$ and linear polarization of the 341-keV γ ray. The yield curve of decay γ indicates a spin higher than 13/2
4917.7 <i>10</i>	13/2,15/2+,19/2+		J^{π} : from $\gamma(\theta)$ and linear polarization data.

[†] From a least-squares fit to γ -ray energies, assuming $\Delta E \gamma = 1$ keV where not given.

[‡] From $\gamma(\theta)$ in 1976Da01 up to 2404 level and from $\gamma(\theta)$ and $\gamma(\ln \text{ pol})$ in 1979Mu08 above that.

[#] From DSAM in 1980Ry03, unless otherwise noted.

[@] From DSAM in 1979Mu08.

¹⁹⁸⁰Ry03: E=10 MeV α beam was produced from the University of Melbourne 5U Pelletron accelerator. Target was 164 μ g/cm² 99.6% enriched ⁶⁰Ni. γ rays were detected with a Ge(Li) detector and protons were detected with a surface-barrier detector. Measured E γ , I γ , p γ -coin, Doppler-shift attenuation. Deduced levels, T_{1/2}, transition strengths. Comparisons with available data.

$\gamma(^{63}Cu)$

E_i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f J_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	Comments
669.5	$1/2^{-}$	669.4 3	100	0 3/2-			
962.08	$5/2^{-}$	961.8 <i>3</i>	100	$0 \frac{3}{2^{-}}$	M1+E2	-0.47 + 4 - 9	
1326.37	$7/2^{-}$	361	17.2 11	962.08 5/2-	M1+E2	-0.18 + 8 - 10	
		1326.6 <i>3</i>	82.8 11	$0 3/2^{-}$	E2		
1411.9	$5/2^{-}$	450	20.2 12	962.08 5/2-	D(+Q)	+0.11 +25-18	
		742	9.6 10	669.5 1/2-	E2		
		1411.8 <i>3</i>	70.2 17	0 3/2-	M1+E2	+0.61 +9-8	
1546.8	3/2-	585	19.7 <i>17</i>	962.08 5/2-	D(+Q)	+0.05 +14-15	
		877 <mark>&</mark>	≤3.0	669.5 1/2-			
		1546.6 4	80.3 17	$0 3/2^{-}$	M1+E2	+0.13 + 5 - 4	
1860.72	$7/2^{-}$	535 <mark>&</mark>	<2.0	1326.37 7/2-			
	• , =	898.7 3	43.4 18	962.08 5/2-	D(+Q)	+0.05 5	
		1861.0 4	56.6 18	$0 3/2^{-}$	E2		
2011.0	$3/2^{-}$	688 <mark>&</mark>	<2.0	1326.37 7/2-			
	-,-	1048.7 8	21.5 27	962.08 5/2-	M1+E2		δ : +0.23 +15-9 or >+7.
		1341	33.3 31	669.5 1/2-			
		2011.4 7	45.2 33	$0 3/2^{-}$	D+Q		δ : +0.06 +9-8 or +3.1 +13-8.
2062.6	$(1/2)^{-}$	516	53.0 35	1546.8 3/2-			δ : -0.10 +8-10 or -3.2 +10-18 if J=3/2.
		1392.3 12	36.0 32	669.5 1/2-			δ : +0.27 +16-15 or -3.7 +12-25 if J=3/2.
		2063	11.0 18	0 3/2-			δ : -0.26 +16-18 or <-7 or >7 if J=3/2.
2081.6	$5/2^{(-)}$	534		1546.8 3/2-			
		669 <mark>&</mark>		1411.9 5/2-			
		758		1326.37 7/2-	D+Q		δ : +0.28 8 or +6.0 +54–23.
		1119		962.08 5/2-			
		2081		0 3/2-			
2091.5	$7/2^{-}$	680		1411.9 5/2-			
		764.9 6		1326.37 7/2-	D+Q		δ : -0.25 +17-24 or +1.3 +7-5.
		1130		962.08 5/2-	D+Q	-1.06 + 23 - 22	
2200 2	0/2-	2092	50 0 10	0 3/2-	D		
2208.2	9/2	885	59.0 18	1326.37 7/2	D+Q		δ : -0.28 5 (J=9/2); +0.56 +14-10 or +2.38 +23-22 (J=5/2).
2226 5	5 /D-	1246	41.0 18	962.08 5/2			δ : -0.05 5 (J=9/2); +2.0 +5-3 (J=5/2).
2330.5	5/2	4/4	≤ 3.0	1800.72 7/2			
		925	8.9 20	1411.9 5/2	$D \downarrow O$		$\delta_{1} = 0.59 \pm 24.29$ or $\lambda \pm 2$
		1575	17.9 20	$902.08 \ 3/2$	D+Q		00.36 + 24 - 36 01 > + 3.
		2337	≥ 2.0 73 2 41	0.3.1/2 0 $3/2^{-1}$	D+O		$\delta = \pm 0.047 \text{ or } -2.6 \pm 8 \pm 12$
2404 1	$7/2^{-}$	991	21231	$14119 5/2^{-1}$	D+Q D+0	$-0.50 \pm 12 - 20$	$0.10.077012.070^{-12}.$
2101.1	,,_	1080	35.7 37	1326.37 7/2-	D(+0)	-0.12 21	
		1441	43.1 38	962.08 5/2-	D+0		δ : -0.26 +6-8 or -1.3 +6-4.
2505.7	9/2+	414.3 4	33 [#] 2	2091.5 7/2-			

Ν

From ENSDF

⁶⁰Ni(α,pγ) **1976Da01,1980Ry03,1979Mu08** (continued)

$\gamma(^{63}Cu)$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f J_f^{\pi}$	Mult. [‡]	δ^{\ddagger}
2505.7	9/2+	645.4 <i>3</i>	40 [#] 2	1860.72 7/2-	E1(+M2) [@]	$-0.01^{\textcircled{0}}2$
		1178.9 <i>3</i>	27 [#] 1	1326.37 7/2-	E1+M2 [@]	
2677.0	$11/2^{-}$	469.2 4	30 2	2208.2 9/2-	M1(+E2) [@]	+0.01 [@] 3
		1350.1 4	70 2	1326.37 7/2-	E2 [@]	
3461.8	$11/2^+$	956.1 5	100	2505.7 9/2+	M1+E2@	$-0.42^{\textcircled{0}}4$
4155.4	$13/2^{+}$	1649.6 6	100	2505.7 9/2+	E2(+M3) [@]	$-0.04^{\textcircled{0}}5$
4496.3 4917.7	17/2 ⁺ 13/2,15/2 ⁺ ,19/2 ⁺	340.9 5 421.4 5	100 100	4155.4 13/2 ⁺ 4496.3 17/2 ⁺	E2(+M3) [@]	$-0.02^{@} 2$

[†] From 1976Da01 up to 2404 level ($E\gamma$ with uncertainties from 1980Ry03) and from 1979Mu08 above that, unless otherwise noted. Intensities are % photon branching from each level.

[±] From $\gamma(\theta)$ in 1976Da01, with magnetic and electric character determined based on RUL and measured T_{1/2} where available, unless otherwise noted.

[#] Approximate branching deduced from $\gamma\gamma$ -coincidence experiment (1979Mu08).

^{*@*} From γ (lin pol) in 1979Mu08.

[&] Placement of transition in the level scheme is uncertain.

60 Ni(α ,p γ) 1976Da01,1980Ry03,1979Mu08

Level Scheme Intensities: % photon branching from each level

 $^{63}_{29}Cu_{34}$