⁶⁴Ni(pol d,³He),(d,³He) 1991Se09,1979Ha03

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 196,17 (2024)	30-Sep-2023

Target $J^{\pi}(^{64}\text{Ni g.s.})=0^+$.

- 1991Se09: two measurements were performed. (pol d,³He) E=52 MeV polarized deuteron beam was from the Karlsruhe isochronous cyclotron. Target was a 1 mg/cm² self-supporting Ni foil (99.7% enriched). Reaction products were detected with a Δ E-E telescope of a silicon strip detector and a surface barrier detector (FWHM=130 keV). Measured $\sigma(\theta)$, $\theta_{c.m.}=12^{\circ}$ to 38°. Deduced J, π , analyzing powers, L-transfers, spectroscopic factors from DWBA analysis. (d,³He) E=52 MeV deuteron beam was produced from the Julich isochronous cyclotron. Target was a 200 µg/cm² self-supporting Ni foil (96.5% enriched). Reaction products were momentum-analyzed with the variable-dispersion QQDDQ spectrometer BIG KARL (FWHM=20 keV) and detected with a mult-wire drift chamber. Measured E(³He, θ). Deduced levels, J, π .
- 1992Se03: E=31 MeV deuteron beam was produced from the Heidelberg MP tandem-post accelerator facility. Target was a 1.0 mg/cm² self-supporting Ni foil (99.7% enriched). Charged particles were detected with four silicon Δ E-E detector telescopes (FWHM=170 keV). γ rays were detected with two Ge(Li) and two intrinsic Ge detectors. Measured ³He- γ -coin; $\sigma(\theta)$, $\theta_{c.m.}=15^{\circ}$ to 25°. Deduced levels, J, π , L-transfers from DWBA analysis. See also (d, ³He γ) for γ data from this measurement.
- 1979Ha03: (d,³He) E=55 MeV deuteron beam was produced from the KVI cyclotron at Groningen, Netherlands. Target was 130 μ g/cm² 98% enriched ⁶⁴Ni. Reaction products were detected with a Δ E-E solid state detector telescope (FWHM \approx 100 keV). Measured σ (E(³He), θ), $\theta_{c.m.}$ =10° to 35°. Deduced levels, J, π , L-transfers, spectroscopic factors from DWBA analysis. Comparisons with available data.

⁶³Co Levels

Spectroscopic	factors C ² S	is defined b	by $d\sigma/d\Omega(exp$	$)=2.95\times C^{2}S$	$S \times d\sigma/d\Omega(I)$	DWBA)/(2j+1),	where	j is the	transferred	total	angular
momentum	(1979Ha03).										

E(level) [†]	$J^{\pi \ddagger}$	L [#]	$C^2S^{\#}$	Comments
0	$7/2^{-}$	3 [@]	4.53	C^2S : other: 6.3 for J=7/2 (1979Ha03).
992 5	$3/2^{-}$	1 @	0.34	$C^{2}S$: other: 0.45 for J=3/2 (1979Ha03).
1382 5	- /	(3)	0.06,0.03	
1423 5		(3)	0.1	E(level): other: 1430 30 (1979Ha03).
				L: from 1979Ha03. Other: L=(1) from 1991Se09. As claimed in 1991Se09 L=3, 1 and 3 are assigned to the weak levels of 1382, 1423, and 1491, respectively, but no $\sigma(\theta)$ data are shown in 1991Se09, while L=(3) for a 1430 level in 1979Ha03 seems to be a good fit to their measured $\sigma(\theta)$ data and L=(1) is assigned to the 1492 level by 1966B115 in (t, α). The evaluator has adopted L(1423)=(3) and L(1491)=(1). C ² S: from 1979Ha03 for J=7/2. Other: 0.01 for J^{π} =1/2 ⁻ and 3/2 ⁻ in 1991Se09.
1491 5		(1)		L: see comments for 1423 level. Other: L=(3) with C ² S=0.08 or 0.04 from 1991Se09, but not adopted by the evaluator.
1668 5		(5) [@]	0.17,0.54	Additional information 1. E(level): other: 1660 20 (1979Ha03). C ² S: other: 0.2 for J=11/2 (1979Ha03).
1888 5	1/2-	1 [@]	0.04	E(level): other: 1880 <i>10</i> (1979Ha03). C ² S: other: 0.05 for J=3/2 (1979Ha03).
2082 5		(3)		
2129 5	7/2-	3 [@]	0.73	E(level): other: 2160 <i>10</i> , doublet of 2129+2191 (1979Ha03). C ² S: other: 1.4 for J=7/2 from 1966Bl15 in (t,α) assumed in analysis (1979Ha03).
2191 5	$1/2^{+}$	$0^{@}$	0.83	C ² S: other: 1.2 (1979Ha03). See comments for 2129 level.
2330 5	7/2-	3 [@]	0.68	E(level): other: 2320 <i>10</i> (1979Ha03). C ² S: other: 1.1 for J=7/2 (1979Ha03).
2375				E(level): rounded value from $(d, {}^{3}\text{He}\gamma)$ data in 1992Se03; not reported in 1992Se03 but a

Continued on next page (footnotes at end of table)

⁶⁴Ni(pol d,³He),(d,³He) **1991Se09,1979Ha03** (continued)

⁶³Co Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	L#	$C^2S^{\#}$	Comments
				weak peak can been seen at around this energy in the ³ He spectrum in 1992Se03. See also comments for 2473 level.
2473 5		(3)	0.06,0.03	E(level): a peak at this energy is clearly seen in the ³ He spectrum (FWHM=20 keV) in Fig.5 of 1991Se09, but not seen in the ³ He spectrum in 1992Se03 (FWHM=170 keV) and 1979Ha03 (FWHM \approx 100 keV) probably because it is not resolved from the 2330 level due to poor resolution. However, a level at 2374.8 is reported by 1992Se03 based on γ data of (d, ³ He γ) but it is not reported in 1991Se09. A weak peak in Fig.5 of 1991Se09 between 2330 and 2473 peaks and on the tail of 2330 peak may correspond to this level in 1992Se03.
2689 5		2 [@]	0.99,0.61	 J^π: 3/2⁺ is favored from analyzing powers, but 5/2⁺ can not be ruled out compeltely (1991Se09). E(level): other: 2680 20 (1979Ha03).
				C^2S : other: 1.8 for J=3/2 (1979Ha03).
2791 5 2882 5		(3) (1)	0.14, 0.07 0.02, 0.01	
2929 <i>5</i> 3031 <i>5</i>		(3) [@] (3)	0.17,0.09 0.19,0.10	C ² S: other: 0.2 for J=7/2 for a doublet of 2929+3031 at 2940 70 (1979Ha03).
3135 5	$(7/2^{-})$	$(3)^{@}$	0.14,0.07	$C^{2}S$: other: 0.5 for J=7/2 for a doublet of 3135+3172 at 3150 20 (1979Ha03).
3412 5	(1/2)	3	0.67,0.34	E(level): other: 3400 20 (1979Ha03). L: from 1979Ha03. Other: (3,2) from 1991Se09; L=(2) from 1992Se03. Note that 1992Se03 assigned L=2 based on their measured $\gamma(\theta)$, which however looks structureless. This makes their L=2 assignment questionable. The L=3 assignment from 1979Ha03 looks to be a good fit to their $\gamma(\theta)$. C ² S: other: 0.6 for J=7/2 (1979Ha03); 0.11 for $J^{\pi}=3/2^+$ and 0.07 for 5/2 ⁺ with L=(2) (1991Se00)
3604 5		(3)	0.09,0.18	E(level),L: other: 3580 40 with L=(2) (1979Ha03). C^{2} S: other: 0.4 for $I^{\pi} = 3/2^{+}$ (1979Ha03).
3676 5 3766 5 3893 5 3985 5 4039 5	(7/2 ⁻) (3/2 ⁺)	 (3) (3) (3) (2) 2 	$\begin{array}{c} 0.10, 0.05\\ 0.15, 0.07\\ 0.47, 0.24\\ 0.22, 0.14\\ 0.02, 0.01 \end{array}$	E (level): other: $3880 \ 40 \ (1979Ha03)$. E(level): other: $4050 \ 30 \ (1979Ha03)$. L: from $1979Ha03$. C ² S: other: 0.6 for $I=3/2 \ (1979Ha03)$
4094 5		$(2)^{\&}$	0 09 0 04	c = 5. one. $(0.0 for 3-3/2 (1)/(31405)).$
4127 5		$(2)^{\&}$	0.15.0.10	
4234 5		(2) ^{&}	0.22,0.14	
4376 5		(2) ^{&}	0.20,0.13	
4453 5		(2) ^{&}	0.11,0.07	
4524 5		(2) ^{&}	0.07,0.03	
4538 5		(2) <mark>&</mark>	0.05,0.03	
4588 5		(2) ^{&}	0.08,0.05	
4700 5		(2) ^{&}	0.04,0.03	
4722 5		(2) <mark>&</mark>	0.05,0.03	
4820 5		(2) ^{&}	0.07,0.04	
4886 5		(2) ^{&}	0.13,0.08	
4968 5		(2) <mark>&</mark>	0.03,0.02	
5010 5		(2) ^{&}	0.05,0.03	
5080 5		(2) ^{&}	0.14,0.09	

Continued on next page (footnotes at end of table)

⁶⁴Ni(pol d,³He),(d,³He) 1991Se09,1979Ha03 (continued)

⁶³Co Levels (continued)

L [#]	$C^2S^{\#}$
(2) ^{&}	0.07,0.05
(2) ^{&}	0.12,0.07
(2) ^{&}	0.10,0.06
(2) &	0.11,0.07
(2) ^{&}	0.11,0.07
(2) ^{&}	0.12,0.07
	$ \frac{L^{\#}}{(2)^{\&}} \\ (2)^{\&} \\ (2)^{&} \\ (2)$

[†] From 1991Se09.
[‡] From analysis of measured analyzing powers in Fig.6 of 1991Se09.

[#] From DWBA analysis of measured $\sigma(\theta)$ in 1991Se09, unless otherwise noted. Where two values are listed, they are for L-1/2 and L+1/2, respectively.

^(a) Also from 1979Ha03. [&] L=2 from a fit to $\sigma(\theta)$ for an energy range of 4-7 MeV in 1991Se09 and of 3.75-7.75 MeV in 1979Ha03.