⁶¹Ni(³He,2nγ) 2010Al28

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Alan L. Nichols, Balraj Singh, Jagdish K. Tuli	NDS 113, 973 (2012)	15-Apr-2012

2010Al28: E=14 MeV, measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)$, level lifetimes by DSAM using HORUS spectrometer consisting of twelve HPGe detectors at the Cologne Tandem accelerator facility. Comparison with shell model and IBM calculations. Identification of multi-phonon excitations and one-phonon mixed-symmetry 2⁺ state.

Additional information 1.

⁶²Zn Levels

E(level) [†]	\mathbf{J}^{π}	T _{1/2} ‡	Comments
0.0	0^{+}		
953.84 9	2+		
1804.69 11	2^{+}		
2186.07 <i>13</i>	4+		
2342.1 4	0^{+}		J^{π} : from $\gamma\gamma(\theta)$ (2010Al28).
2384.51 16	3+		
2743.62 16	4+		
2803.08 19	2+	0.146 ps 21	E(level): identified as one component of one-phonon mixed-symmetry 2^+ state.
2884.0 <i>3</i>	2+	0.132 ps 21	E(level): identified as second component of one-phonon mixed-symmetry 2^+ state.
3209.88 22	4+	0.250 ps 35	E(level): 2010A128 identify the 3209, 4 ⁺ state as a good candidate for a two-phonon mixed symmetry state. However, non-observation of expected transition to the one-phonon mixed symmetry 2 ⁺ state at 2803 keV does not allow confirmed identification of such an excitation. J ^{π} : from $\gamma\gamma(\theta)$ (2010A128). J ^{π} =3 ⁻ is ruled out – would give a large quadrupole (M2) admixture for 1023.7 γ which is inconsistent with RUL.
3223.5 4	3		
3586.58 24	5+		
3707.5 <i>3</i> 4008.4 <i>7</i>	6+	0.250 ps 35	
4043.26 <i>24</i> 4217.6 <i>8</i>	5-	0.270 ps 42	
4347.86 25	(6^{+})	0.48 ps 13	
4535.4 9			
4904.9 <i>3</i>			
5123.9 6			
5131.1 6			
5143.4 5			
5481.3 7			

[†] From least-squares fit to $E\gamma$ data.

[‡] Effective half-lives from DSAM measurements (2010Al28), not corrected for side feedings; should be considered as upper limits.

$\gamma(^{62}Zn)$

B(M1), B(E2)(W.u.) and B(E1)(W.u.) values are deduced by 2010A128 from effective half-lives, thus should be considered as lower limits.

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	$E_f J_f^{\pi}$	Mult.	δ^{\ddagger}	Comments
953.84	2+	953.8 <i>1</i>	100	0.0 0+			
1804.69	2^{+}	850.8 1	100 5	953.84 2+	M1+E2	-3.6 +7-10	
		1804.8 2	89 <i>9</i>	$0.0 0^+$	(E2)		Mult.: $\delta(M3/E2) = -0.05 \ 11$.
2186.07	4+	1232.2 <i>1</i>	100	953.84 2+			

				⁶¹ Ni(³	He,2nγ) 20	10Al28 (continue	<u>d)</u>			
γ (⁶² Zn) (continued)										
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	δ^{\ddagger}	Comments			
2342.1 2384.51	0+ 3+	1388.2 <i>4</i> 579.8 2 1430.7 2	100 64 7 100 6	953.84 2+ 1804.69 2+ 953.84 2+	M1+E2 M1+E2	-1.9 +3-5 +3.4 +9-6	E_{γ} : as per e-mail of 6 Nov 2010 from M. Albers. $E\gamma$ =1431.7 in Table 1 of			
2743.62	4+	359.2 <i>4</i> 557.5 <i>2</i> 938.9 <i>2</i>	52 1004 7910	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(M1+E2) (M1+E2) (E2)	-0.32 22 -0.38 7	Mult.: $\delta(M3/E2) = +0.14$ 13.			
2803.08	2+	998.4 <i>4</i> 1849.2 <i>2</i> (2803.0 <i>5</i>)	9 2 100 7 8 5	1804.69 2 ⁺ 953.84 2 ⁺ 0.0 0 ⁺	(M1+E2) (M1(+E2)) [E2]	+0.03 16	 B(M1)↓<0.029 6; B(E2)(W.u.)<21 6 B(M1)=0.039 6. BE2W=0.11 7. B(E2)(W.u.): deduced by the evaluators. B(E2)(eff)(W.u.)=0.011 <i>3</i> listed in 2010A128 is a misprint. I_γ: γ not observed in 2010A128, intensity taken from Iγ(2803)/Iγ(1849)=6 4/72 6 			
2884.0	2+	1079.4 <i>4</i> 1930.1 <i>4</i> 2884.0 [#] <i>5</i>	5 2 100 7 <2	1804.69 2 ⁺ 953.84 2 ⁺ 0.0 0 ⁺	[M1+E2] (M1(+E2)) [E2]	-0.32 +30-36	(2008Fi07). B(M1)<0.018 5 \$ B(E2)(W.u.)<9 3. B(M1)=0.035 8 \$ B(E2)(W.u.)=0.96 21. E_{γ},I_{γ} : this γ not seen in 2010A128, but included in the analysis of transition probabilities using an upper limit of intensity deduced from detection sensitivity. Evaluators assign $I\gamma$ <2 based on quoted B(E2)(W.u.) value in 2010A128. B(E2)(W.u.) +0.015 10			
3209.88	4+	325.7 ^{†#} 406.7 ^{†#} 1023.7 2 2256 5 8	<2 <2 100 5	2884.0 2 ⁺ 2803.08 2 ⁺ 2186.07 4 ⁺ 053.84 2 ⁺	[E2] [E2] (M1(+E2))	+0.01 18	B(E2)(W.u.)<0.015 10. B(E2)(W.u.)<293. B(E2)(W.u.)<97. B(M1)=0.10 2 B(E2)(W.u.)=0.10 1. B(E2)(W.u.)=0.74 17.			
3223.5	3	2269.6 4	100	953.84 2 ⁺	D(+Q)	-0.10 19	δ : -0.07 <i>12</i> quoted in text is a misprint (as per email of 6 Nov 2010 from M. Albers, first author of 2010Al28).			
3586.58 3707.5	5+ 6+	843.0 <i>3</i> 1202.1 <i>3</i> 1521.5 <i>3</i>	97 8 100 5 100	2743.62 4 ⁺ 2384.51 3 ⁺ 2186.07 4 ⁺	(M1+E2) E2 (E2)		$\delta(\text{E2/M1}) = -2.5 + 10 - 33 \text{ or } -0.38 22.$ Mult.: $\delta(\text{M3/E2}) = -0.06 11.$ B(E2)(W.u.)=19 3. B(E2)(off)(W.u.): deduced by the			
1008 1		2202 7 7	100	1804 60 2+			evaluators. $\delta(M3/E2)=+0.01$ 6.			
4008.4	5-	833.2 3	10 2	3209.88 4 ⁺	[E1]		B(E1)(W.u.)= 1.9×10^{-4} 5. B(E1)(W.u.)(eff): deduced by the			
		1299.4 4	35 4	2743.62 4+	(E1)		B(E1)(W.u.)= 1.8×10^{-4} 4. B(E1)(W.u.): deduced by the evaluators.			
		1857.5 4	100 7	2186.07 4+	(E1)		$B(E1)(W.u.)=1.7\times10^{-4} 3.$ B(E1)(W.u.): deduced by the evaluators. $\delta(M2/E1)=0.00 6.$			
4217.6 4347.86	(6+)	2031.5 7 640.4 3 761.7 6 1604.2 3	100 18 2 <5 100 6	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	E2		Mult.: $\delta(M3/E2) = (-0.19\ 22).$			

Continued on next page (footnotes at end of table)

⁶¹Ni(³He,2n γ) 2010Al28 (continued)

|--|

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	\mathbf{J}_{f}^{π}	Mult.	δ^{\ddagger}
4535.4		2349.3 8	100	2186.07	4+		
4904.9		557.4 5	54 10	4347.86	(6^{+})		
		861.5 <i>3</i>	14 2	4043.26	5-		
		1197.2 5	100 8	3707.5	6+	D(+Q)	-0.01 13
5123.9		1080.6 5	100	4043.26	5-		
5131.1		1087.8 5	100	4043.26	5-	D(+Q)	0.00 20
5143.4		795.6 6	23 <i>3</i>	4347.86	(6^{+})		
		1556.7 5	100 6	3586.58	5+		
5481.3		1773.7 6	100	3707.5	6+		

[†] This γ not seen in 2010Al28; upper limit of intensity from detection sensitivity used to estimate E2 transition probability. Evaluators assign $I\gamma < 2$ based on quoted B(E2)(W.u.)(eff) value in 2010Al28.

[‡] From $\gamma\gamma(\theta)$ data in 2010Al28 and RUL. [#] Placement of transition in the level scheme is uncertain.

 $_{30}^{62} Zn_{32}$

4

From ENSDF

 $_{30}^{62} Zn_{32}$ -4

 ${}^{62}_{30}\mathrm{Zn}_{32}$ -4