58 Ni(⁶Li,pn γ) 1981Wa09

History

Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Alan L. Nichols, Balraj Singh, Jagdish K. Tuli	NDS 113, 973 (2012)	15-Apr-2012	

1981Wa09: E=15-24 MeV, measured E γ , I γ , $\gamma\gamma$, n γ coin., excitation functions, $\gamma(\theta)$, $\gamma(\text{linear polarization})$, lifetimes by DSAM and RDM. Comparisons made with the shell and IBA models.

⁶²Zn Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	0+		
953.7 <i>3</i>	2+	2.91 [@] ps 21	
1804.7 <i>3</i>	2+	2.63 [@] ps 42	
2185.8 4	4+	$0.53^{\#} \text{ ps } +24-14$	
2384.2 4	3+	1.7 ps 11	$T_{1/2}$: <2.8 ps from RDM; >0.7 ps from DSAM.
2743.2 4	4+	2.36 [@] ps 21	J^{π} : 2 ⁺ ,3 ⁻ or 4 ⁺ from $\gamma(\theta)$ and $\gamma(\text{lin pol})$; 4 ⁺ from RUL.
3208.9 <i>15</i> 3586.1.6	5+	$0.63^{\#}$ ns +63-21	I^{π} , possible 3 or 5 from $\nu(\theta)$: >4 from excitation function
3706.7.5	5 6 ⁺	0.05 ps + 05 21 $0.25^{\text{\#}} \text{ ps} + 17 7$	I^{π} Type: from my coin spectra
4042.2.8	5	0.25 ps + 17 - 7	π_1 , $\pi_{1/2}$. from the contrast spectral.
4042.5 0	5	0.09 ps +14-49	5^{-} from systematics of even-A Zn nuclei.
4347.0 5	6+	0.28 [#] ps +28-14	J ^{π} : 4 or 6 from $\gamma(\theta)$; excitation function supports 6 ⁺ ; transition strength arguments (RUL) exclude negative parity.
4903.6 7	$7^{(-)}$	8.3 [@] ps 35	J^{π} : 5 or 7 from $\gamma(\theta)$ and $\gamma(\ln \text{ pol})$; excitation function supports 7.
5122.5 8	5,7	2.1 ps 14	J^{π} : 3,5 or 7 from $\gamma(\theta)$ and $\gamma(\text{lin pol})$; yrast population disfavors 3; transition strength arguments (RUL) restrict the parity to be the same as that for 4042 level.
			$T_{1/2}$: <3.5 ps from RDM; >0.7 ps from DSAM for 5122 and 5130 levels.
5130.1 8	(6)	>0.7 ps	$T_{1/2}$: from DSAM for 5122+5130 levels. J ^{π} : from excitation function.
5142.8 9	6+,7+	0.42 [#] ps +21-14	J ^{π} : 6 or 7 from excitation function; parity from $\gamma(\theta)$ and $\gamma($ lin pol).
5481.82 <i>13</i>	$6,7,8^{+}$	$0.28^{\#} \text{ ps} + 14 - 7$	J^{π} : from $\gamma(\theta)$, $\gamma(\lim \text{pol})$, and excitation function. $J^{\pi} = (8^+)$ in Adopted Levels.
6080.5 9	7 ⁽⁻⁾ ,9 ⁽⁻⁾	3.8 ps 32	J^{π} : 5,7 or 9 from $\gamma(\theta)$ and $\gamma(\text{lin pol})$ with same parity as that of the 4904 level; 5 rejected by excitation function.
			$T_{1/2}$: <7 ps from RDM, >0.7 ps from DSA.
6112.3 <i>10</i> 6628.5 <i>22</i>			

7422.4 12

 † From least-squares fit to Ey data.

[±] As proposed in 1981Wa09 based on their $\gamma(\theta)$, $\gamma(\text{lin pol})$, and lifetime measurements.

From DSAM. @ From RDM.

$\gamma(^{62}\text{Zn})$

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. <mark>b</mark>	δ^{c}	Comments
359.1 2	1.45 8	2743.2	4+	2384.2 3+	M1+E2	-0.9 +4-6	$A_2 = -0.39 4$, $A_4 = +0.02 5$, pol = +0.2 3.
556.9 5	2.9 <mark>&</mark> 7	4903.6	$7^{(-)}$	4347.0 6+			Additional information 7.
557.3 5	13 & 3	2743.2	4+	2185.8 4+	M1+E2	-0.35 3	Additional information 3. $A_{2}=+0.14$ 2. $A_{4}=-0.04$ 3. pol=+0.63 7.
580.0 5	8.6 6	2384.2	3+	1804.7 2+	M1+E2	-1.1 7	δ : -0.6 to -1.7.

Continued on next page (footnotes at end of table)

⁵⁸Ni(⁶Li,pnγ) **1981Wa09** (continued)

$\gamma(^{62}Zn)$ (continued) I_{γ}^{\dagger} Mult.^b δ^{C} Eγ E_i(level) J_i^{π} \mathbf{E}_{f} J_{f}^{π} Comments $A_2 = -0.37 2, A_4 = +0.08 3,$ pol=+0.25 7. Additional information 2. 640.3 2 0.53 5 4347.0 6^{+} 3706.7 6+ Additional information 6. 2.0[#] 3 833.4 10 4042.3 3208.9 5 Additional information 5. 842.7 5 5.63 3586.1 5+ 2743.2 4+ M1+E2 -2.17 + 84 - 5 $A_2 = -0.44 3, A_4 = +0.07 3,$ pol=+0.08 10. 850.6 5 13.07 1804.7 2^{+} 953.7 2+ M1+E2 -5.1 +29-34 $A_2 = -0.17 2, A_4 = -0.03 3,$ pol=-0.03 8. 4^+ 938.2 5 9.2 3 1804.7 2+ 2743.2 E2 Mult.: $\delta(M3/E2) = -0.13 + 11 - 5$. A₂=+0.14 3, A₄=-0.05 3, pol=+0.4 *1*. 953.5[‡] 3 100 953.7 2^{+} $0.0 \quad 0^+$ E2 A₂=+0.19 2, A₄=-0.06 3, pol=+0.37 7. 2.3^a 10 1024.0 10 2185.8 4+ 3208.9 $2.8^{\textcircled{0}}$ 1 1080.2 3 5122.5 5.7 4042.3 5 M1+E2,E2 Mult.: from $\gamma(\theta)$ and RUL. Mult.: $\delta(E2/M1) = -0.31 4$ for 5 to 5. $\delta(M3/E2) = -0.05 + 4 - 3$ for 7 to 5. A₂=+0.28 3, A₄=-0.12 3, pol=+0.7 3. 1.27[@] 6 1087.8 3 5130.1 (6) 4042.3 5 D+Q -4.7 26 δ : -4.8 +26-25 for transition between opposite parity states; -4.3 + 22 - 30 if the parities are the same. $A_2 = -0.25 5, A_4 = +0.12 5,$ pol=-0.1 6. 4.7[@] 3 1176.9 6 6080.5 $7^{(-)}.9^{(-)}$ 4903.6 7(-) M1+E2 Mult.: from $\gamma(\theta)$ and RUL. Mult.: $\delta(E2/M1) = -0.41 + 17 - 6$ for 7 to 7. $\delta(M3/E2) = -0.07$ +22-6 for 9 to 7. $A_2 = -0.16 3, A_4 = -0.03 3,$ pol=+0.7 2.4.6[@] 2 $7^{(-)}$ 1196.6 6 4903.6 3706.7 6+ δ : -1.8 +16-18 for 7⁺ to 6⁺; +0.02 + 2 - 5 for 7^{-} to 6^{+} . $A_2 = -0.26 \ 3, \ A_4 = +0.01 \ 3,$ pol=+0.8 3. 1202.2 6 4.5 2 3586.1 5^{+} 2384.2 3+ E2 $A_2 = +0.20 3$, $A_4 = -0.08 3$, pol=+0.7 3.Additional information 4. 1208.7 7 4903.6 7(-) 6112.3 1231.9[‡] 3 57.1 23 2185.8 4^{+} 953.7 2+ Mult.: $\delta(M3/E2) = -0.02 + 5 - 3$. E2 $A_2 = +0.29 2$, $A_4 = -0.10 3$, pol=+0.5 1. 3.5[#] 4 1299.3 12 4042.3 5 2743.2 4+ 6080.5 7(-),9(-) 1341.9 8 7422.4 11.8[#] 6 3^{+} 1430.6 8 2384.2 953.7 2+ 1506.0 20 6628.5 5122.5 5,7 1520.7 4 17.8 8 3706.7 6^{+} 2185.8 4+ Mult.: $\delta(M3/E2) = -0.03 4$. E2 A₂=+0.36 4, A₄=-0.19 5, pol=+0.6 2.

Continued on next page (footnotes at end of table)

⁵⁸Ni(⁶Li,pnγ) **1981Wa09** (continued)

$\gamma(^{62}$ Zn) (continued)

E_{γ}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. ^b	Comments
1556.7 7	3.2 [@] 2	5142.8	6+,7+	3586.1 5+	M1+E2,E2	Mult.: $\delta(\text{E2/M1})=+2.8 +41-23$ for 6 to 5. $\delta(\text{M3/E2})=+0.5 +101-6$ for 7 to 5.
1604.2 7	6.9 4	4347.0	6+	2743.2 4+	E2	A ₂ =+0.16 3, A ₄ =+0.04 3, pol=+0.3 3. Mult.: δ (M3/E2)=-0.08 6. A ₂ =+0.29 4, A ₄ =-0.20 5.
1775.1 12	4.8 [#] 3	5481.82	6,7,8+	3706.7 6+		
1805.1 [‡] 4	10.1 5	1804.7	2+	$0.0 \ 0^+$	E2	$A_2=+0.18 \ 3, \ A_4=-0.08 \ 3, \ pol=+0.7 \ 2.$ Additional information 1.
1856.4 8	7.3 [@] 4	4042.3	5	2185.8 4+		δ : -2.5 +20-17 for 5 ⁺ to 4 ⁺ ; +0.02 +2-4 for 5 ⁻ to 4 ⁺ . A ₂ =-0.30 3, A ₄ =+0.04 4, pol=+0.95 28.

[†] From $\gamma(\theta)$ at 20 MeV, unless stated otherwise.

[‡] Value taken from 1979-NDS (1979Ha01) and used for calibration.

[#] From $n\gamma(\theta)$.

[@] From $\gamma(\theta)$ at 24 MeV.

[&] From $\gamma\gamma$ coin. data at 20 MeV.

^{*a*} From $\gamma\gamma$ coin. data at 24 MeV.

^{*b*} From $\gamma(\theta)$ and $\gamma(\text{linear polarization})$ combined with RUL when applicable.

^{*c*} From minimization of $\gamma(\theta)$ and $\gamma(\text{linear polarization})$ data.

