Adopted Levels, Gammas

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Balrai Singh, Huang Xiaolong, and Wang Xianghan	NDS 204.1 (2025)	30-Jun-2023						

 $O(\beta^{-})=13010 \text{ syst}; S(n)=3900 \text{ syst}; S(p)=19900 \text{ syst}; O(\alpha)=-13090 \text{ syst}$ 2021Wa16

Estimated uncertainties (2021Wa16): 480 for $Q(\beta^{-})$, 500 for S(n), 720 for S(p), 640 for $Q(\alpha)$.

 $S(2n)=6240\ 470$, $S(2p)=37780\ 810$, $Q(\beta^-n)=9910\ 460\ (syst, 2021Wa16)$. $Q(\beta^-2n)=4750\ 440$, $Q(\beta^-3n)=1200\ 420\ (syst, deduced by evaluator from relevant mass excesses in 2021Wa16)$.

2009Ta24, 2009Ta05: ⁶²Ti identified by fragmentation of ⁷⁶Ge beam at 132 MeV/nucleon with Be and W targets at NSCL facility using A1900 fragment separator combined with S800 analysis beam line to form a two- stage separator system. The transmitted fragments were analyzed event-by-event in terms of momentum and particle identification. The nuclei of interest were stopped in eight Si PIN diodes (50x50 mm²) which provided measurement of energy loss, nuclear charge and total kinetic energy. The time-of-flight of each particle that reached the detector stack was measured in four different ways using plastic scintillators, Si detectors, and parallel-plate avalanche counters. The simultaneous measurement of ΔE signals, magnetic rigidity, total kinetic energy and time-of-flight (ToF) provided unambiguous identification of the atomic number, charge state and mass number.

2020Mi13: measured mass excess using time-of-flight magnetic-rigidity technique at RIBF-RIKEN facility.

Theoretical nuclear structure calculations:

- 2022Ho02: calculated quadrupole deformation parameter β_2 , S(2n), rms matter radius, hexadecapole deformation parameter β_4 , difference of the charge square radii, diffuseness parameters, occupation of highly elongated intruder orbitals and effect on quadrupole and hexadecapole deformations using Skyrme-Hartree-Fock method in three-dimensional coordinate space.
- 2022Ko04: calculated ground state energy, charge rms radius using coupled cluster (CC) and ab-initio density functional theory, extended to open-shell deformed nuclei.
- 2022Ya23: theory: structure: calculated binding energy, charge radius, quadrupole deformation, and pairing energy using relativistic mean-field (RMF) formalism.
- 2021Co14: calculated S(2n), energy of the first 2⁺ state, effective single-particle energies (ESPEs), neutron-neutron monopole matrix elements using shell-model with an effective Hamiltonian from many-body perturbation theory using ⁴⁰Ca as a closed core, and three-body contributions through density-dependent two-body matrix elements (TBME) derived within a microscopic approach from chiral forces.
- 2018Sa40: calculated potential energy curves, $T_{1/2}$, $Q(\beta^-)$, β^-n probability, Gamow-Teller strength distributions using constrained HF+BCS with Skyrme force SLy4.
- 2015Wa11: calculated potential energy surfaces, S(2p), excitation energies and B(E2), J^{π} , neutron and proton single-particle levels using relativistic mean-field + BCS method with PC-PK1 functional.
- 2014Co04: calculated energies and B(E2) values of first 2⁺ state using realistic shell-model calculations with two different model spaces.
- Theoretical calculations: consult the NSR database at for 16 primary references for nuclear structure, and two for decay modes and half-life.
- 2012Ca30: calculated energy levels, J^{π} , electric quadrupole and dipole magnetic moments using shell model with FPD6 and GXPF1 interactions.
- 2010Le20: calculated levels, J^{π} , B(E2), quadrupole moment, occupation of the neutron intruder orbitals and percentage of particle-hole excitations using interacting shell-model framework in full *pf* valence space based on ⁴⁸Ca core and effective interaction based on G matrix; discussed shell evolution and island of inversion around N=40.
- 2009Ga41: calculated single-particle energies, Nilsson diagrams, potential energy curves, neutron and proton pairing energy curves, excitation energies, spectroscopic quadrupole moments, and B(E2) using Hartree-Fock-Bogoliubov (HFB) approach with Gogny D1S effective interaction.

2008Gu03: calculated potential energy surfaces and ground state deformation using relativistic mean field theory.

Other theory references: 12 for structure and two for decay in the NSR database, also listed in this dataset as 'document' records. Additional information 1.

Adopted Levels, Gammas (continued)

⁶²Ti Levels

Cross Reference (XREF) Flags

1 H(63 V,2p γ) A

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments		
0	0^{+}	A	$\%\beta^{-}=100; \ \%\beta^{-}n=?; \ \%\beta^{-}2n=?; \ \%\beta^{-}3n=?$		
			Measured cross section=0.54 pb <i>11</i> using ⁹ Be target, as per e-mail reply of Nov 11, 2009 from O. Tarasov (first author of 2009Ta24 and 2009Ta05).		
			E(level): fragment observed by 2009Ta24 is assumed to be in the ground state of ⁶² Ti.		
			Theoretical $T_{1/2}(\beta)=15.5$ ms, $\%\beta^{-}n=7.0$, $\%\beta^{-}2n=0.0$, $\%\beta^{-}3n=0.0$ (2019Mo01).		
			Theoretical $T_{1/2}(\beta)$ =12.9 ms, $\%\beta$ -n=3.86, 4.0; $\%\beta$ -2n=0.146, 0.099; $\%\beta$ -3n=0.0 (2021Mi17, two values for a decay mode refer to different fission barriers).		
			$T_{1/2}$: half-life of the ⁶² Ti activity has not been measured. It is expected to be greater than the time-of-flight through the beam transport system, which is 620-650 ns. From systematics of		
			half-lives of neighboring Ti isotopes, the half-life is expected to be <15 ms (15 ms for 61 Ti, 22 ms for 60 Ti, 28 ms for 59 Ti and 58 ms for 58 Ti), assuming a decreasing trend of half-life as neutron number increases in neutron-rich nuclei. From systematic, $T_{1/2}$ =9 ms in 2021Ko07.		
683 10	(2^{+})	Α	<i>y</i> ,		
1506 22	(4+)	Α			
683 <i>10</i> 1506 22	(2 ⁺) (4 ⁺)	A A	half-lives of neighboring Ti isotopes, the half-life is expected to be <15 ms (15 ms for 61 Ti, 22 for 60 Ti, 28 ms for 59 Ti and 58 ms for 58 Ti), assuming a decreasing trend of half-life as neutron number increases in neutron-rich nuclei. From systematic, T _{1/2} =9 ms in 2021Ko07.		

[†] From E γ values. [‡] As given in Fig. 2a of 2020Co01, based on level-energy and J^{π} systematics in the neighboring even-even nuclides with N=40 and Z=20-32, and also from model calculations.

 $\gamma(^{62}\text{Ti})$

E_i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π
683	(2^{+})	683 10	100	0	0^{+}
1506	(4^{+})	823 20	100	683	(2^{+})

[†] Based on cross section measurements in ${}^{1}H({}^{63}V,2p)$.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 ${}^{62}_{22}{
m Ti}_{40}$