Adopted Levels

History

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh, Huang Xiaolong, and Wang Xianghan NDS 204,1 (2025) 30-Jun-2023

 $Q(\beta^{-})=19150 \text{ syst}$; S(n)=1260 syst; S(p)=18990 syst; $Q(\alpha)=-17050 \text{ syst}$ 2021Wa16

Estimated uncertainties (2021Wa16): 720 for $Q(\beta^-)$, 850 for S(n), 1000 for S(p), 920 for $Q(\alpha)$.

 $S(2n)=4280\ 780,\ Q(\beta^-n)=15610\ 670\ (syst, 2021Wa16).\ S(2p)=43480\ (Theory,\ 2019Mo01).\ Q(\beta^-2n)=13270\ 650,\ Q(\beta^-3n)=8980\ 670,\ Q(\beta^-4n)=5950\ 630,\ Q(\beta^-5n)=1350\ 640\ (syst,\ deduced\ by\ evaluator\ from\ relevant\ mass\ excesses\ in\ 2021Wa16).$

2018Ta17: 62 Sc formed by fragmentation of 70 Zn $^{30+}$ beam at 345 MeV/nucleon from RIKEN-RIBF accelerator complex. Rotating target of 9 Be of 15 mm thickness were located at the BigRIPS two-stage ion separator. Particle identification (PID) was achieved by measuring time of flight (TOF), energy loss (Δ E), total kinetic energy (TKE), and magnetic rigidity (B ρ) through event by event analysis of reaction products. Particles of interest were stopped in a 76-mm thick CsI crystal after passing through six 1-mm thick silicon p-i-n diodes, while the magnetic rigidity (B ρ) of the fragments was reconstructed from position and angle measurements at foci using two sets of position-sensitive parallel plate avalanche counters (PPACs). Optimization was done using LISE++ simulation code.

Additional information 1.

⁶²Sc Levels

E(level) Comments

 $\%\beta^-=100; \%\beta^-n=?; \%\beta^-2n=?; \%\beta^-3n=?; \%\beta^-4n=?$ $\%\beta^-5n=?$

Only the β^- decay mode is expected, accompanied by delayed neutron decays, thus 100% β^- decay is assigned by inference.

A total of two events were assigned to ⁶²Sc, with tuned setting of the spectrometer for ⁶⁰Ca. It is assumed that the observed events correspond to the ground-state activity.

Theoretical $T_{1/2}(\beta) = 4.2 \text{ ms}, \%\beta^- n = 27, \%\beta^- 2n = 33, \%\beta^- 3n = 1.0, \%\beta^- 4n = 0.0, \%\beta^- 5n = 0.0 (2019Mo01).$

Theoretical $T_{1/2}(\beta)$ =7.0 ms, $\%\beta^-$ n=71.1, 79.6; $\%\beta^-$ 2n=21.8, 13.4; $\%\beta^-$ 3n=1.26, 0.78; $\%\beta^-$ 4n=0.032, 0.008; $\%\beta^-$ 5n=0 (2021Mi17, two values for a decay mode refer to different fission barriers).

 $T_{1/2}$: half-life of the 62 Sc activity has not been measured. It is expected to be greater than the time-of-flight through the beam transport system, which may be about 500 ns. From systematics of half-lives of neighboring Sc isotopes, the half-life is expected to be <10 ms (12 ms for 58 Sc, 13 ms for 57 Sc, 26 ms for 56 Sc and 105 ms for 55 Sc), assuming a decreasing trend of half-life as neutron number increases in neutron-rich nuclei. From systematics, $T_{1/2}$ =2 ms in 2021Ko07.

 J^{π} : 1 or 8 from $\Omega(p)=7/2$ and $\Omega(neutron)=9/2$ (2019Mo01, theory).