62 Co β^- decay (1.54 min) 1970Jo12,1969Es03

History

Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Alan L. Nichols, Balraj Singh, Jagdish K. Tuli	NDS 113, 973 (2012)	15-Apr-2012	

Parent: ⁶²Co: E=0.0; $J^{\pi}=(2)^+$; $T_{1/2}=1.54 \text{ min } 10$; $Q(\beta^-)=5315 \ 20$; $\%\beta^-$ decay=100.0

 ${}^{62}\text{Co-J}^{\pi}, \text{T}_{1/2}$: From Adopted Levels for ${}^{62}\text{Co.}$

 62 Co-Q(β^-): From 2011AuZZ, 2003Au03.

1970Jo12 (also 1971JoZN thesis): ⁶²Co from ⁶⁴Ni(d, α), enriched ⁶⁴Ni target, E=16 MeV, Ge(Li), plastic scintillator, identified ⁶⁰Cu, ⁶¹Cu, ⁶²Cu and ⁶¹Co as main impurities. Measured E γ , I γ , E β , I β , $\gamma\gamma$, $\beta\gamma$ coin, half-life of ⁶²Co g.s..

1969Es03: ⁶²Co from Ni(n,p), natural Ni target, E=14.5 MeV, Ge(Li) singles, NaI(Tl) for $\gamma\gamma$. Measured E γ , I γ , $\gamma\gamma$.

1969Wa16: 62 Co from 62 Ni(n,p) and 65 Cu(n, α), 97.8% and 99.05% enriched 62 Ni target and natural Cu target, E=14.8 MeV,

Ge(Li) singles, NaI(Tl) for $\gamma\gamma$ and $\beta\gamma$ coincidences, plastic scintillator for $\beta\gamma$ coincidences. Four γ rays assigned to ⁶²Co g.s. decay. Measured E γ , I γ , E β , I β , $\gamma\gamma$ and $\beta\gamma$ coin, half-life of ⁶²Co g.s.

1968Ki08: ⁶²Co from ⁶²Ni(n,p) and ⁶⁵Cu(n, α); measured E γ , I γ , E β . Ge(Li) detector for γ rays.

1962Va23: measured half-life, $E\beta$, $I\beta$.

1960Pr05: measured E β , half-life of ⁶²Co g.s..

1949Pa01: identified ⁶²Co isotope, measured E β , half-life of ⁶²Co g.s..

Total decay energy of 5270 keV 49 deduced (by RADLIST code) from proposed decay scheme is in agreement with the expected value of 5315 keV 20, indicating that decay scheme is complete.

⁶²Ni Levels

E(level)	J^{π}		
0.0	0^{+}		
1172.9 2	2+		
2301.8 4	2^{+}		
3059.2 12	3+		
3158.0 6	2^{+}		
3257.7 <i>3</i>	2+		
3270.5 7	$1^+, 2^+$		
3370 2	1^{+}		
3518.7 12	2^{+}		
4063 1	$1^+.2^+$		

[†] From Adopted Levels.

β^{-} radiations

E(decay)	E(level)	$\mathrm{I}eta^{-\dagger}$	Log ft	Comments
(1252 20)	4063	0.66 8	5.59 7	av $E\beta = 473.9$
(1796 20)	3518.7	1.7 3	5.81 9	av $E\beta = 719.9$
(1945 20)	3370	0.63 18	6.38 13	av $E\beta = 788.9$
(2045 20)	3270.5	1.91 <i>17</i>	5.99 6	av $\mathbf{E}\boldsymbol{\beta} = 834.9$
(2057 20)	3257.7	0.33 17	6.8 2	av $E\beta = 840.9$
(2157 20)	3158.0	2.8 6	5.92 10	av $E\beta = 887.9$
(2256 20)	3059.2	1.00 25	6.45 12	av $E\beta = 933 \ 10$
(3013 20)	2301.8	24.3 8	5.60 4	av $E\beta = 1292 \ 10$
(4142 20)	1172.9	66.7 11	5.77 3	E(decay): 2.90×10^3 20 (1969Wa16). av E β = 1836 10 E(decay): 4.05×10^3 15 (1969Wa16), 4000 200 (1975TiZW).
(5315 [‡] 20)	0.0	< 0.5	>8.4	$I\beta^-$: from 1970Jo12.

Continued on next page (footnotes at end of table)

62 Co β^- decay (1.54 min) 1970Jo12,1969Es03 (continued)

β^{-} radiations (continued)

[†] Absolute intensity per 100 decays.
[‡] Existence of this branch is questionable.

$\gamma(^{62}\text{Ni})$

I γ normalization: from $\Sigma(I(\gamma+ce))$ to g.s.=100, assuming negligible β^- feeding to the g.s..

${\rm E_{\gamma}}^{\ddagger}$	I_{γ} [‡] <i>b</i>	E _i (level)	\mathbf{J}_i^π	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^a	δ^{a}	α^{\dagger}	Comments
1128.9 3	12.8 20	2301.8	2+	1172.9 2+	M1+E2	+3.19 11	1.82×10 ⁻⁴	$\alpha(K)=0.0001616\ 23;\alpha(L)=1.579\times10^{-5}\ 23;\alpha(M)=2.22\times10^{-6}\ 4;\alpha(N)=9.57\times10^{-8}\ 14$
1172.9 2	100	1172.9	2+	0.0 0+	E2		1.72×10 ⁻⁴	$\alpha(\text{IPF})=1.89\times10^{-6} 3$ $\alpha(\text{K})=1.501\times10^{-4} 2I;$ $\alpha(\text{L})=1.466\times10^{-5} 2I;$ $\alpha(\text{M})=2.06\times10^{-6} 3;$ $\alpha(\text{N})=8.89\times10^{-8} I3$ $\alpha(\text{IPF})=5.39\times10^{-6} 8$
1886.3 [#] 12	0.5 [#] 3	3059.2	3+	1172.9 2+	M1(+E2)	-0.03 +3-2	2.68×10 ⁻⁴	$\alpha(K) = 5.40 \times 10^{-5} 8;$ $\alpha(L) = 5.23 \times 10^{-6} 8;$ $\alpha(M) = 7.37 \times 10^{-7} 11$ $\alpha(N) = 3.20 \times 10^{-8} 5;$ $\alpha(HE) = 2.08 \times 10^{-4} 3$
1985.1 6	2.1 7	3158.0	2+	1172.9 2+	(M1+E2)	+0.13 8	3.05×10 ⁻⁴	$\alpha(\text{IFF}) = 2.08 \times 10^{-5} \text{ s}$ $\alpha(\text{K}) = 4.94 \times 10^{-5} \text{ 7};$ $\alpha(\text{L}) = 4.78 \times 10^{-6} \text{ 7};$ $\alpha(\text{M}) = 6.74 \times 10^{-7} \text{ 10};$ $\alpha(\text{N}) = 2.93 \times 10^{-8} \text{ s}$ $\alpha(\text{IFF}) = 2.50 \times 10^{-4} \text{ 4}$
2083 [@] 2	$0.4^{\textcircled{0}}2$	3257.7	2^{+}	1172.9 2+				
2097 [@] 1	1.1 [@] 2	3270.5	$1^+, 2^+$	1172.9 2+				
2301.9 5	17.7 4	2301.8	2+	0.0 0+	E2		5.04×10 ⁻⁴	$\alpha(K)=3.97\times10^{-5} 6;$ $\alpha(L)=3.85\times10^{-6} 6;$ $\alpha(M)=5.42\times10^{-7} 8;$ $\alpha(N)=2.35\times10^{-8} 4;$ $\alpha(IPF)=4.59\times10^{-4} 7$
2345.8 12	1.6 4	3518.7	2+	1172.9 2+	(M1+E2)	+0.44 9	4.59×10 ⁻⁴	$\alpha(K)=3.72\times10^{-5} 6;$ $\alpha(L)=3.60\times10^{-6} 6;$ $\alpha(M)=5.08\times10^{-7} 8;$ $\alpha(N)=2.21\times10^{-8} 4$ $\alpha(IPF)=4.18\times10^{-4} 8$
3158 1	1.0 2	3158.0	2^{+}	$0.0 \ 0^+$				
3271.1 ^{&} 10	<0.35 <mark>&</mark>	3270.5	$1^+, 2^+$	$0.0 0^+$				
3370 2	0.45 20	3370	1+	$0.0 \ 0^+$	D			
3519 ^w 3	0.10 5	3518.7	2+	$0.0 \ 0^+$				
4063 ^w 1	0.4 ^w 1	4063	$1^+, 2^+$	$0.0 \ 0^+$				

[†] Additional information 1. [‡] Weighted average of 1968Ki08, 1969Es03, 1969Wa16 and 1970Jo12, except as noted.

[#] γ reported by 1970Jo12 only.

 62 Co β^- decay (1.54 min) 1970Jo12,1969Es03 (continued)

 $\gamma(^{62}\text{Ni})$ (continued)

[@] γ reported by 1969Es03 only.
[&] Upper limit of intensity defined by 1970Jo12; assigned to the 13.86-min isomer by 1969Es03.
^a From Adopted Gammas.

^b For absolute intensity per 100 decays, multiply by 0.832 4.

⁶²Co $β^-$ decay (1.54 min) 1970Jo12,1969Es03

Decay Scheme

 $^{62}_{28}{
m Ni}_{34}$