⁶²Ni(n,n'γ) 2011Ch05,1989Ko54

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Alan L. Nichols, Balraj Singh, Jagdish K. Tuli	NDS 113, 973 (2012)	15-Apr-2012

2011Ch05: E(n)=2.8-4.1 MeV in 100-keV steps. Measured $E\gamma$, $I\gamma$, $\gamma(\theta)$, excitation functions, lifetimes by DSAM. Comparison with large-scale shell-model calculations. Deduced B(E2) and B(M1) strengths.

1989Ko54, 1985KoZM,: E=fast (1-6 MeV) neutrons from reactor, measured E γ , $\gamma(\theta)$, lifetimes by DSA; deduced B(E2), B(M1). Others:

1982Sh28: E=14.2 MeV.

1978KoZY: Ni(n,n' γ) E=14 MeV measured σ (first 2⁺).

All data adopted from 2011Ch05, unless stated otherwise. Limited data are given in other studies (1989Ko54,1985KoZM) for 1173, 2301, 2336, 3058, 3158, 3277, 3519, 3757 and 4018 levels.

62Ni Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	Comments	
0.0	0^{+}			
1172.97 11	2+	1.24 ps +60-33		
2048.67 13	0^{+}	1.8 ps +19-6		
2301.82 14	2+	0.67 ps +20-14	$T_{1/2}$: other: 0.35 ps +55–14 (1989Ko54).	
2336.54 15	4+	0.85 ps +41-22	$T_{1/2}$: other: 0.3 ps +11-1 (1989Ko54).	
2890.5 <i>3</i>	0^{+}	$>3.1^{@}$ ps		
3058.74 17	3+	2.3 ^(a) ps +14-7	J^{π} : from $\gamma(\theta)$ data. $J^{\pi}=2^+$ is inconsistent with $\gamma(\theta)$ for 722 γ and 757 γ . The g.s. transition was not observed in 2011Ch05, with an detection limit of <2% branching ratio.	
3157.90 17	2+	0.62 ps +11-10	$T_{1/2}$: other: 0.083 ps +21-14 (1989Ko54).	
3176.7 <i>3</i>	4+	>0.97 ps		
3257.51 22	2+	>0.97 ps		
3269.95 21	(1+,2+)	0.125 ps <i>14</i>	When feeding from the 1221 doublet transition is considered, measured branching ratios are 4.8 2 for 968 γ , 38.9 10 for 1221 γ , 44.7 13 for 2097 γ and 11.6 14 for 3270 γ .	
3277.5 4	4+	0.42 ps +7-6	$T_{1/2}$: other: 0.4 ps +13-5 (1989Ko54).	
3369.67 23	1+	0.35 ps +8-6		
3518.27 23	2+	0.62 ps +12-10	$T_{1/2}$: other: 0.097 ps +21-14 (1989Ko54).	
3522.51 19	(3 ⁺)	0.61 ps +30-17	Without including the intensity of the weak 265γ and considering feeding from the 1221 doublet transition, the measured branching ratios are 4.6 <i>3</i> for 463γ , 24.8 <i>6</i> for 1186 γ and 70.7 <i>16</i> for 1221 γ .	
3524.4 5	0^{+}	0.74 ps +46-22		
3756.5 <i>3</i>	3-	0.17 ps +8-5	$T_{1/2}$: other: 0.45 ps +45-17 (1989Ko54).	
4018	6+		E(level),J ^{π} : level population from 1985KoZM. According to 1985KoZM, there is another γ deexciting the 3757 level, but no E γ is listed.	

[†] From least-squares fit to $E\gamma$ data. There are small differences in level energies as compared with those in 2011Ch05.

[‡] From 2011Ch05 based on $\gamma(\theta)$ and lifetime data, together with previous assignments for the low-lying levels.

[#] From DSAM (2011Ch05), unless otherwise stated.

[@] From Adopted Levels for ⁶²Ni.

⁶²Ni(n,n'γ) 2011Ch05,1989Ko54 (continued)

γ (⁶²Ni)

A₂ and A₄ values are from e-mail reply of 17 Nov 2010 from A. Chakraborty, first author of 2011Ch05 (some of these values are also given in the published paper).

E _i (level)	\mathbf{J}_i^π	Eγ	I_{γ}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	Comments
1172.97	$2^+_{0^+}$	1172.95 11	100	$0.0 0^+$	E2		$A_2 = +0.21 I; A_4 = -0.16 2$
2048.67	0^{+}	8/5.09 /	100	$11/2.97 2^{+}$ 1172.07 2 ⁺	[E2] M1+E2	177112	$A_2 = -0.01 2; A_4 = -0.01 2$
2301.62	2	1120.02 14	44./ 11	11/2.9/ 2	WITTL2	±2.7 ±4=3	$A_2 = +0.18 2, A_4 = -0.11 3$ δ : other: +0.07 3 or +1.90 2
							(1989Ko54).
		2301.8 <i>3</i>	55.3 18	$0.0 0^+$	E2		$A_2 = +0.44 4; A_4 = -0.25 5$
2336.54	4+	1163.50 12	100	1172.97 2+	E2		A ₂ =+0.35 2; A ₄ =-0.17 3
2890.5	0^{+}	1717.5 <i>3</i>	100	1172.97 2+	[E2]		$A_2 = -0.01 4; A_4 = -0.01 6$
3058.74	3+	722.02 23	19.8 15	2336.54 4+	M1+E2	+1.6 +3-9	$A_2 = -0.68 4; A_4 = 0.00 5$
		756.85 20	42 3	2301.82 2+	D+Q	-0.08 2	$A_2 = -0.36\ 2;\ A_4 = 0.00\ 3$
		1885.8 3	38 3	11/2.9/ 2	D(+Q)	-0.03 + 3 - 2	$A_2 = -0.29 2; A_4 = 0.00 3$
3157.00	2^+	856 00 12	723	2301.82 2+	M1 + E2		$A_{2} = +0.20.5; A_{2} = -0.03.7$
5157.90	Z	830.09 12	1.2.5	2301.82 2	MIT+E2		$A_2 = +0.29$ J, $A_4 = -0.05$ 7 $\delta_{1} \pm 1.0 \pm 4 = 3$ or ± 0.00 7
		1984 9 3	58625	1172.97 2+	M1+E2		$A_{2}=+0.14$ 2: $A_{4}=-0.01$ 3
		1901190	0010 20	11/20/ 2			δ : -0.13 3 or +3.8 +7-5 (2011Ch05).
							Other: -0.14 5 (1985KoZM).
		3158.0 15	34 4	$0.0 0^+$	E2		$A_2 = +0.38 \ 3; A_4 = -0.04 \ 4$
3176.7	4+	875.0 4	6.5 10	2301.82 2+			
		2003.6 4	94 4	1172.97 2+	E2		$A_2 = +0.37 2; A_4 = -0.12 3$
3257.51	2+	955.7 3	3.5 2	2301.82 2+	[E2+M1]		
		2084.3 4	93 3	11/2.97 21	M1+E2		$A_2 = +0.566; A_4 = -0.119$
		2257 6 12	214	0.0 0+	EO		0: +1.03 + 22 - 70 or +0.43 + 90 - 12.
2260.05	(1+2+)	3237.0 12	5.14	0.0 0	E2		$A_2 = +0.52$ 18, $A_4 = -0.07$ 24
3269.95	$(1^+, 2^+)$	968.2.5	>5'	2301.82 21			
		1221.0 ° 3	<42"	2048.67 0+			
		2097.2 3	>43	1172.97 2+			
		3270.0 22	<10 [†]	$0.0 0^+$			
3277.5	4+	2104.5 3	100	1172.97 2+	E2		$A_2 = +0.42 2; A_4 = -0.14 3$
3369.67	1+	479.3 6	2.1 4	$2890.5 0^+$	141.50		
		106/./ 3	12.6 13	$2301.82 \ 2^{+}$	MI+E2	+1.6 + 41 - 11	$A_2 = -0.14$ /; $A_4 = +0.08$ 8
		1321.1 3	9.7 10	$2048.67 0^{+}$	D		$A_{2} = -0.26.3$; $A_{4} = \pm 0.01.3$
3518 27	2^{+}	360 5 4	192	$3157.90 2^+$	D		$A_2 = -0.205, A_4 = +0.015$
5510.27	-	459.3 3	7.4 4	3058.74 3+			
		1469.9 5	9.8 4	2048.67 0+	E2		A ₂ =+0.43 7; A ₄ =-0.09 10
		2345.3 4	74 4	1172.97 2+	M1+E2	+0.32 6	$A_2 = +0.56 4; A_4 = +0.02 5$
							δ : +1.20 <i>13</i> also possible, but less likely.
		3519.1 <i>21</i>	7.3 11	$0.0 0^+$	E2		$A_2 = +0.44$ 12; $A_4 = -0.21$ 16
3522.51	(3 ⁺)	264.94 25		3257.51 2+			I_{γ} : not measured due to poor statistics.
		463.3 5	>4 [†]	3058.74 3+			
		1185.94 18	>24 [†]	2336.54 4+	M1+E2	-20 +8-43	A ₂ =-0.22 5; A ₄ =+0.06 7
		1221.0 [#] 3	<72 ^{#†}	2301.82 2+			
3524.4	0^{+}	2351.4 4	100	1172.97 2+			$A_2 = -0.03$ 7; $A_4 = -0.04$ 8
3756.5	3-	1454.5 3	48 4	2301.82 2+	5		
4010	<i>(</i> +	2584.1 5	52 4	$1172.97 2^+$	D		$A_2 = -0.53 \ I5; \ A_4 = -0.09 \ I9$
4018	0.	1082		2550.54 4			$B(E_2)=0.00/0 + 70 - 24 (1989K034).$

Continued on next page (footnotes at end of table)

$^{62}{\rm Ni}({\rm n,n'}\gamma)$ 2011Ch05,1989Ko54 (continued)

$\gamma(^{62}\text{Ni})$ (continued)

[†] 1221 γ is a doublet, and the intensity could not be measured; consequently, only the limiting branching ratio is given. [‡] From $\gamma(\theta)$ data in 2011Ch05 and RUL. [#] Multiply placed with intensity suitably divided.

⁶²Ni(n,n'γ) 2011Ch05,1989Ko54

Level Scheme

Intensities: % photon branching from each level @ Multiply placed: intensity suitably divided

