#### ${}^{48}Ca({}^{18}O,4n\gamma)$ 1978Wa09

|                 | History                                        |                     |                        |
|-----------------|------------------------------------------------|---------------------|------------------------|
| Туре            | Author                                         | Citation            | Literature Cutoff Date |
| Full Evaluation | Alan L. Nichols, Balraj Singh, Jagdish K. Tuli | NDS 113, 973 (2012) | 15-Apr-2012            |

E=40-55 MeV, measured  $\gamma$ ,  $\gamma(\theta)$ ,  $\gamma\gamma$  coincidences, T<sub>1/2</sub> by DSA or RDM.

### 62Ni Levels

| E(level)                           | $J^{\pi #}$    | $T_{1/2}^{\dagger}$     | Comments                                                                                             |
|------------------------------------|----------------|-------------------------|------------------------------------------------------------------------------------------------------|
| 0.0                                | $0^+_{2^+}$    |                         |                                                                                                      |
| 2335.90 24                         | 4 <sup>+</sup> | <2 ps                   |                                                                                                      |
| 3176.0 <i>3</i><br>3276.8 <i>3</i> | 4+<br>4+       |                         |                                                                                                      |
| 4018.2 3                           | $(6)^{+}$      | 0.62 <sup>‡</sup> ps 28 |                                                                                                      |
| 4160.5 <i>3</i>                    | (5)            | <1.4 ps                 | $J^{\pi}$ : (5) from D+Q $\gamma$ to 4 <sup>+</sup> states and reaction mechanism.                   |
| 4648.1 <i>3</i>                    | (7)            | 509 ps 24               | J <sup><math>\pi</math></sup> : from D+Q $\gamma$ to (6 <sup>+</sup> ) level and E2 $\gamma$ to (5). |
| 4862.5 <i>3</i>                    | 5-,6-          | 8.39 ps 14              | $J^{\pi}$ : (5,6,7) from lifetime and intense feeding.                                               |
| 5750.5 4                           | (9)            | 0.55 <sup>‡</sup> ps 21 |                                                                                                      |
| 5805.4 4                           | (7,8,9)        | <1.4 ps                 | $J^{\pi}$ : from lifetime and intense feeding.                                                       |
| 6646.3 <i>4</i>                    | (9)            |                         |                                                                                                      |
| 7558.7 4                           | (11)@          | 0.83 <sup>‡</sup> ps 42 |                                                                                                      |

 $^{\dagger}$  From RDM, except where noted.

<sup>‡</sup> Lower limit from DSA combined with upper limit from RDM.
<sup>#</sup> From Adopted Levels, except as noted.
<sup>@</sup> Parity same as 4160 level.

# $\gamma(^{62}\text{Ni})$

 $\delta$  from  $\gamma(\theta)$ , using the 1173 and 1163 transitions to fix the A<sub>2</sub> attenuation factor at 0.28.

| Eγ                      | $I_{\gamma}^{\dagger}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_{f}$ | $\mathbf{J}_f^{\pi}$ | Mult. <sup>‡</sup> | Comments                                                                        |
|-------------------------|------------------------|------------------------|----------------------|------------------|----------------------|--------------------|---------------------------------------------------------------------------------|
| 487.59 13               | 46                     | 4648.1                 | (7)                  | 4160.5           | (5)                  | E2 <sup>#</sup>    | $A_2 = +0.19 2; A_4 = -0.13 2$                                                  |
| 630.00 14               | 89                     | 4648.1                 | (7)                  | 4018.2           | $(6)^{+}$            | D+Q                | $A_2 = -0.33 2; A_4 = 0$                                                        |
|                         |                        |                        |                      |                  |                      |                    | δ: -0.19 4 or -2.3 5.                                                           |
|                         |                        |                        |                      |                  |                      |                    | $I_{\gamma}$ : corrected for 10% contamination by $\gamma$ of <sup>63</sup> Ni. |
| 702.02 14               | 19                     | 4862.5                 | 5-,6-                | 4160.5           | (5)                  |                    |                                                                                 |
| 883.54 16               | 17                     | 4160.5                 | (5)                  | 3276.8           | 4+                   | D+Q                | $A_2 = -0.33 2; A_4 = 0$                                                        |
|                         |                        |                        |                      |                  |                      |                    | $\delta$ : -0.24 6 or -2.4 4.                                                   |
| 895.75 16               | 10                     | 6646.3                 | (9)                  | 5750.5           | (9)                  |                    |                                                                                 |
| 912.33 16               | 6                      | 7558.7                 | (11)                 | 6646.3           | (9)                  | (E2) <sup>#</sup>  | $A_2 = +0.28$ 7; $A_4 = 0$                                                      |
| 1102.41 17              | 44                     | 5750.5                 | (9)                  | 4648.1           | (7)                  | (E2) <sup>#</sup>  | $A_2 = +0.305; A_4 = 0$                                                         |
| 1157.24 22              | 10                     | 5805.4                 | (7,8,9)              | 4648.1           | (7)                  |                    |                                                                                 |
| 1163.30 18              | 212                    | 2335.90                | 4+                   | 1172.73          | 2+                   | E2 <sup>#</sup>    | $A_2 = +0.16 2; A_4 = -0.09 3$                                                  |
| 1172.72 18              | 258                    | 1172.73                | 2+                   | 0.0              | $0^{+}$              | Q                  | $A_2 = +0.19 2; A_4 = -0.09 2$                                                  |
| <sup>x</sup> 1402.05 21 | 5.7                    |                        |                      |                  |                      |                    |                                                                                 |
| <sup>x</sup> 1530.43 21 | 6.9                    |                        |                      |                  |                      |                    |                                                                                 |
| 1682.34 <i>21</i>       | 109                    | 4018.2                 | $(6)^{+}$            | 2335.90          | 4+                   | E2 <b>#</b>        | $A_2 = +0.21$ 2; $A_4 = -0.08$ 2                                                |
| 1808.43 22              | 12                     | 7558.7                 | (11)                 | 5750.5           | (9)                  | (E2) <sup>#</sup>  | $A_2 = +0.10 \ 3; \ A_4 = 0$                                                    |

#### ${}^{48}$ Ca( ${}^{18}$ O,4n $\gamma$ ) 1978Wa09 (continued)

# $\gamma(^{62}\text{Ni})$ (continued)

| Eγ                             | $I_{\gamma}^{\dagger}$ | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_f  \mathbf{J}_f^{\pi}$ | Mult. <sup>‡</sup> | Comments                                                          |
|--------------------------------|------------------------|---------------|----------------------|------------------------------------|--------------------|-------------------------------------------------------------------|
| 1824.66 22                     | 60                     | 4160.5        | (5)                  | 2335.90 4+                         | D+Q                | $A_2 = -0.30 2; A_4 = 0$<br>$\delta: -0.16 6 \text{ or } -3.1 4.$ |
| 1997.94 24                     | 8                      | 6646.3        | (9)                  | 4648.1 (7)                         |                    |                                                                   |
| 2003.25 25                     | 10                     | 3176.0        | 4+                   | 1172.73 2+                         | Q                  | $A_2 = +0.105; A_4 = 0$                                           |
| 2103.78 25                     | 19                     | 3276.8        | 4+                   | 1172.73 2+                         | Q                  | $A_2 = +0.17 4; A_4 = 0$                                          |
| <sup>x</sup> 2490.92 <i>34</i> | 4                      |               |                      |                                    |                    |                                                                   |
| X2571 20 20                    | 2                      |               |                      |                                    |                    |                                                                   |

<sup>x</sup>2571.30 *30* 3

<sup>†</sup> Relative  $\gamma$  intensity at E=50 MeV.

<sup>‡</sup> From  $\gamma(\theta)$ , except where noted. <sup>#</sup> From  $\gamma(\theta)$  and RUL.

 $x \gamma$  ray not placed in level scheme.



 $^{62}_{28}\rm{Ni}_{34}$