Coulomb excitation 2015Ga38

History

Author Citation Literature Cutoff Date Balraj Singh, Huang Xiaolong, and Wang Xianghan NDS 204,1 (2025) Full Evaluation 30-Jun-2023

- 2015Ga38: ⁶²Mn beam (mixed with ⁶²Fe) produced by bombarding a thick UC_x target with a 1.4 GeV proton beam at REX-ISOLDE-CERN facility. A 4.0 mg/cm² thick ¹⁰⁹Ag target was used for safe Coulomb excitation. The scattered projectiles and the recoiling target nuclei were detected using a DSSSD placed downstream from the target position. The γ rays were detected using HPGe detectors of Miniball array. Measured scattered particles, recoiling target nuclei, E γ , I γ , $\gamma\gamma$ -coin, (particle) γ -coin, (particle) $\gamma\gamma$ -coin, (particle)-coin. Data analyzed using GOSIA2 which allows a simultaneous least-squares fit of matrix elements in the target and projectile systems.
- 2015Ga38 stated that the 671-ms, (4⁺) isomer in the ⁶²Mn beam was extracted with a much higher intensity than the 92-ms, (1⁺) activity, as with a >700 ms trapping plus charge breeding time, only the long lived-state is expected to be present at the target position. Relative position of the two β -decaying states in ⁶²Mn (1⁽⁺⁾ and 4⁽⁺⁾) was not known until this experiment.
- The 418 γ in 2015Ga38 is shown as deexciting a state of this energy, as it is not seen in coincidence with any other γ ray. Nearly independent of spin, such an assumption leads to a B(E2)(W.u.) \approx 30, more than double that of the 2⁺ to 0⁺ transition in ⁶²Fe, which is considered unlikely. 2015Ga38 thus propose that while the final state of the decay is the (1+), 92-ms state proceeding via the excitation of an intermediate $(2^+,3^+)$ level. Through GOSIA analysis, comparison of the observed γ -ray yield of 418 γ as a function of level-energy difference between the newly-proposed state and the (4+), 671-ms isomeric state plotted with B(E2)(W.u.) ranging from 1×10^{-10} W.u. to 5 W.u. suggests that the excitation of the intermediate level at an energy of 72 keV +8-3, above the energy of the 671-ms, (4⁺) isomer, which fixes the relative ordering of the two β -decaying states in ⁶²Mn.

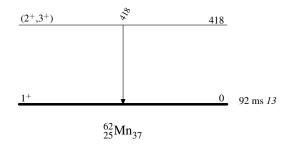
Sub-barrier Coulomb excitation using 2.86 MeV/nucleon ⁶²Mn beam and ¹⁰⁹Ag target.

62Mn Levels

J^{π}	$T_{1/2}$	_
1+†	92 [†] ms <i>13</i>	
4 ^{+†}	671 [†] ms <i>5</i>	Е
$(2^+,3^+)$		Е
	1 ^{+†} 4 ^{+†}	$ \begin{array}{ccc} & & & & & \\ 1 + \dagger & & & & & \\ 4 + \dagger & & & & & \\ 4 + \dagger & & & & & \\ \end{array} $ $ \begin{array}{cccc} & & & & & \\ 92^{\dagger} & \text{ms } 13 \\ 671^{\dagger} & \text{ms } 5 $

Comments

(level): Based on 346 + 3 - 8 from analysis of Coulomb excitation data in 2015Ga38. (level): from Ey. Other: 72 keV +8-3 above the 671-ms, (4^+) isomer deduced in 2015Ga38 from GOSIA analysis, by plotting the observed yield of 418y as a function of difference of energy of this level and that of the 671-ms isomeric state, for B(E2)(W.u.) values of 5.0 W.u. to 10^{-10} W.u. for the 418-keV transition, as shown in Fig. 8 of 2015Ga38.


 J^{π} : proposed by 2015Ga38 from the GOISA calculations and comparison with similar levels in the neighboring isotopes and isotones.

 I_{γ} : 970 50 relative to $I_{\gamma}=1520$ 40 and 2300 60 for 311 γ and 415 γ from ¹⁰⁹Ag target excitation, respectively. Uncertainties due to background subtraction, relative efficiency, and normalization to the ¹⁰⁹Ag target excitation are included. No γ rays were observed in coincidence with this transition.

[†] From the Adopted Levels.

Coulomb excitation 2015Ga38

Level Scheme

