Adopted Levels, Gammas

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Alan L. Nichols, Balraj Singh, Jagdish K. Tuli	NDS 113,973 (2012)	15-Apr-2012

 $Q(\beta^{-})=1.040\times10^{4} \text{ syst}; S(n)=4.81\times10^{3} \text{ syst}; S(p)=1.332\times10^{4} \text{ syst}; Q(\alpha)=-1.059\times10^{4} \text{ syst}$ 2012Wa38 Note: Current evaluation has used the following Q record 10697.1 38 4510.2 3513.29E3 25-10.40E3 25 2011AuZZ. $Q(\beta^{-}n)=2668.2$ 37, S(2n)=11355.7 35, S(2p)=30182 475 (2011AuZZ).

Values in 2003Au03: $Q(\beta^{-})=10860\ 220$, $S(n)=4550\ 320$, $S(p)=13150\ 340$, $Q(\beta^{-}n)=2810\ 220$, $S(2n)=11000\ 240$, $S(2p)=30040\ 520$. 1983Ru06: ⁶²Mn identified in W(⁷⁶Ge,X) at 9 MeV/nucleon; mass separation. Assignment based on the agreement between the

energy of the most intense 877-keV γ transition and the energy of the first excited level of ⁶²Fe measured in the ⁶⁴Ni(¹⁴C, ¹⁶O)

and $({}^{18}\text{O}, {}^{20}\text{Ne})$ reactions, and the decay of the 877-keV γ and β^- rays.

Structure calculations: 2010Sr03, 2005Ga01.

⁶²Mn Levels

Cross Reference (XREF) Flags

A 62 Cr β^- decay (206 ms)

B $Ni(^{86}Kr,X)$

- C ²³⁸U(⁶⁴Ni,X γ)
- **D** 238 U(70 Zn,X γ)

				$\mathbf{D} = \mathbf{O}(\mathbf{Z}\mathbf{n},\mathbf{X})$
E(level)	$J^{\pi \dagger}$	T _{1/2}	XREF	Comments
0+x	(1+)	92 ms <i>13</i>	Ā	$%β^-=100; %β^-n=?$ Additional information 1. E(level): systematics of even-A Mn nuclei (2010Ch51) support (1 ⁺) as the ground state and (4 ⁺) as the isomer, however, there is no experimental evidence as yet for the placement of the 92-ms and 671-ms states. Calculated (1997Mo25) %β ⁻ n=0.03. T _{1/2} : from 1999So20. Others: 84 ms <i>10</i> (M. Hannawald, thesis, Mainz, 1998), 2005Ga01 deduced half-life of g.s. of ⁶² Cr, their decay curve could be fitted only by attributing a shorter half-life of 92 ms <i>13</i> for ⁶² Mn, not a longer one of 671 ms.
0+y	(4+)	671 ms 5	BCD	J [*] , E(level): from syst of neighboring even Mn nuclides (2010Ch51). Possible β feeding of (0 ⁺) state in ⁶² Fe. Possible configuration= K=1/2 ⁻ proton state coupled to K=1/2 ⁻ neutron state (2011Li50). Large-scale shell-model calculations by 2010Sr03 predict 2 ⁺ ground state for GXPF1A and KB3G interactions. 2005Ga01, in their shell-model calculations, predict 2 ⁺ using KB3G interaction with 4 ⁺ at 453 keV, but 1 ⁺ using KB3 interaction with 4 ⁺ at 360 keV. $\%\beta^{-}=100; \%\beta^{-}n=?$
				J ^{π} ,E(level): from systematics of neighboring even Mn nuclides (2010Ch51). (3 ⁺) is less likely but not completely ruled out. 2005Ga01, in their shell-model calculations, predict 4 ⁺ at 360 keV using KB3 interaction, which also predicts a 1 ⁺ ground state. Possible configuration= $\pi f_{7/2} \otimes v p_{1/2}$ (2011Li50). T _{1/2} : from 1999Ha05. Other: 0.88 s <i>15</i> (1983Ru06, $\beta\gamma$ (t), \approx 5 half-lives). Weighted average of the two values is 671 ms 7.
113.8+y ^{\ddagger} 3 222.4+y ^{\ddagger} 5 285.0+x 17 418 2+y ^{\ddagger} 5	$(4) (5) (0^+, 2^+) (6)$	95 ns 2	BC CD A	T _{1/2} : from 2010Da06 (also 1999DaZQ thesis).
640.0+x <i>17</i> 642.8+y [‡] 6	(1 ⁺) (7)		A CD	J^{π} : possible allowed β feeding from 0 ⁺ .

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁶²Mn Levels (continued)

E(level)	$J^{\pi \dagger}$	XREF	Comments
1183.7+y [‡] 12	(8)	CD	
1500+x? 3	A	A	E(level): 2005Ga01 propose the existence of this level and its de-exciting 1215 γ ray based upon the difference in intensities of the 355 and 285 transitions, which indicates an additional β -decay branch to the 285 level. The observed 1215 γ transition accounts for the missing intensity.

 † From systematics of even-A Mn nuclei and decay pattern. ‡ Band(A): Band based on (4).

$\gamma(^{62}Mn)$

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	E_f	\mathbf{J}_{f}^{π}
113.8+y	(4)	113.8 <i>3</i>	100	0+y	(4^{+})
222.4+y	(5)	108.6 <i>3</i>	100	113.8+y	(4)
285.0+x	$(0^+, 2^+)$	285 2	100	0+x	(1^{+})
418.2+y	(6)	195.8 2	100	222.4+y	(5)
640.0+x	(1^{+})	355 2	100	285.0+x	$(0^+, 2^+)$
		640 2	68	0+x	(1^{+})
642.8+y	(7)	224.6 <i>3</i>	100	418.2+y	(6)
1183.7+y	(8)	540.9 10	100	642.8+y	(7)
1500+x?		1215 [‡] 2	100	285.0+x	$(0^+, 2^+)$

[†] Averages of values taken when data are available from different reactions.
[‡] Placement of transition in the level scheme is uncertain.

 $^{62}_{25}Mn_{37}$

Adopted Levels, Gammas

