24 Mg(40 Ca,2n γ) 2023Wi05,2005Ru06 | | History | | | |-----------------|---|------------------|------------------------| | Type | Author | Citation | Literature Cutoff Date | | Full Evaluation | Balraj Singh, Huang Xiaolong, and Wang Xianghan | NDS 204,1 (2025) | 30-Jun-2023 | Includes data on the ¹²C(⁶²Ge, ⁶²Ge') reaction and the ¹²C(⁶³Ge, ⁶²Ge) reaction. 2023Wi05: E(⁴⁰Ca)=106 MeV incident on a ²⁴Mg target. Measured Eγ, Iγ, γγ using the JUROGAM3 array. Recoils separated with the MARA vacuum-mode mass separator. Data include inelastic scattering on natural carbon target as well as nucleon removal reaction from ⁶³Ge. Comparison with the shell-model calculations with the K3BGR (GXPF1A) effective interactions. 2005Ru06: E=104 MeV. Measured E γ , I γ , $\gamma\gamma$, (recoil) γ coin using Fragment mass analyzer, Gammasphere array with 77 Ge detectors and 30 neutron detectors, eight Si-strip telescopes, and two rings of the CsI array of Microball. #### ⁶²Ge Levels | E(level) | $J^{\pi \dagger}$ | Comments | | | |----------------|-------------------|--|--|--| | 0 | 0+ | | | | | 965 <i>1</i> | 2+ | | | | | 1756 <i>13</i> | (2^{+}) | | | | | 2185 <i>12</i> | (4^{+}) | | | | | 2285? | | J^{π} : In comparison to low-lying structures in 62 Zn and 62 Ga, the spin may be assigned as 4 ⁺ , However as pointed out by 2005Ru06, much better statistics are needed to make definitive assignments. | | | | 3197 20 | (3^{-}) | | | | | 3697 2 | (6^{+}) | | | | [†] Proposed in 2023Wi05 based on comparions with mirror nucleus ⁶²Zn and shell-model predictions. ### γ (62Ge | E_{γ}^{\dagger} | E_i (level) | \mathbf{J}_i^{π} | \mathbf{E}_f | \mathbf{J}_f^{π} | Comments | |------------------------|---------------|----------------------|----------------|----------------------|--| | 965 1 | 965 | 2+ | 0 | 0+ | E_{γ} : others: 965 3 in inelastic scattering; 964 in 2005Ru06. | | 1220 12 | 2185 | (4^{+}) | 965 | 2+ | E_{γ} : from inelastic scattering. | | 1321 [‡] | 2285? | | 965 | 2+ | E_{γ} : From 2005Ru06. | | 1505 2 | 3697 | (6^{+}) | 2185 | (4^{+}) | | | 1756 <i>13</i> | 1756 | (2^{+}) | 0 | 0_{+} | E_{γ} : from the $^{12}C(^{63}Ge,^{62}Ge)$ reaction. | | 2232 20 | 3197 | (3^{-}) | 965 | 2+ | | [†] From fusion evaporation reaction in 2023Wi05, except where noted. [‡] Placement of transition in the level scheme is uncertain. # 24 Mg(40 Ca,2n γ) 2023Wi05,2005Ru06 ### Legend ## Level Scheme ---- → γ Decay (Uncertain) $^{62}_{32}\mathrm{Ge}_{30}$ -2