24 Mg(40 Ca,2n γ) 2023Wi05,2005Ru06

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, Huang Xiaolong, and Wang Xianghan	NDS 204,1 (2025)	30-Jun-2023

Includes data on the ¹²C(⁶²Ge, ⁶²Ge') reaction and the ¹²C(⁶³Ge, ⁶²Ge) reaction.

2023Wi05: E(⁴⁰Ca)=106 MeV incident on a ²⁴Mg target. Measured Eγ, Iγ, γγ using the JUROGAM3 array. Recoils separated with the MARA vacuum-mode mass separator. Data include inelastic scattering on natural carbon target as well as nucleon removal reaction from ⁶³Ge. Comparison with the shell-model calculations with the K3BGR (GXPF1A) effective interactions.

2005Ru06: E=104 MeV. Measured E γ , I γ , $\gamma\gamma$, (recoil) γ coin using Fragment mass analyzer, Gammasphere array with 77 Ge detectors and 30 neutron detectors, eight Si-strip telescopes, and two rings of the CsI array of Microball.

⁶²Ge Levels

E(level)	$J^{\pi \dagger}$	Comments		
0	0+			
965 <i>1</i>	2+			
1756 <i>13</i>	(2^{+})			
2185 <i>12</i>	(4^{+})			
2285?		J^{π} : In comparison to low-lying structures in 62 Zn and 62 Ga, the spin may be assigned as 4 ⁺ , However as pointed out by 2005Ru06, much better statistics are needed to make definitive assignments.		
3197 20	(3^{-})			
3697 2	(6^{+})			

[†] Proposed in 2023Wi05 based on comparions with mirror nucleus ⁶²Zn and shell-model predictions.

γ (62Ge

E_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Comments
965 1	965	2+	0	0+	E_{γ} : others: 965 3 in inelastic scattering; 964 in 2005Ru06.
1220 12	2185	(4^{+})	965	2+	E_{γ} : from inelastic scattering.
1321 [‡]	2285?		965	2+	E_{γ} : From 2005Ru06.
1505 2	3697	(6^{+})	2185	(4^{+})	
1756 <i>13</i>	1756	(2^{+})	0	0_{+}	E_{γ} : from the $^{12}C(^{63}Ge,^{62}Ge)$ reaction.
2232 20	3197	(3^{-})	965	2+	

[†] From fusion evaporation reaction in 2023Wi05, except where noted.

[‡] Placement of transition in the level scheme is uncertain.

24 Mg(40 Ca,2n γ) 2023Wi05,2005Ru06

Legend

Level Scheme

---- → γ Decay (Uncertain)

 $^{62}_{32}\mathrm{Ge}_{30}$ -2

