Coulomb excitation 2015Ga38

History

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh, Huang Xiaolong, and Wang Xianghan NDS 204,1 (2025) 30-Jun-2023

2015Ga38: 62 Fe beam was produced in-beam via the β -decay of 62 Mn. The 62 Mn beam was produced by bombarding a thick UC_x target with a 1.4 GeV proton beam at REX-ISOLDE-CERN facility. The trapping and charge breeding times were varied to produce the 62 Fe beam via in-trap method. The final energy of the beam was 2.86 MeV/nucleon. A 4.0 mg/cm² thick 109 Ag target was used for safe Coulomb excitation. The scattered projectiles and the recoiling target nuclei were detected using a compact-disc shaped DSSSD placed 32.5 mm downstream from the target position. γ -rays were detected using HPGe detectors of Miniball array. Measured: scattered particles, recoiling target nuclei, E γ , I γ , $\gamma\gamma$ -coin, (particle) γ -coin, (particle)-coin, (particle)- $\gamma\gamma$ -coin, Deduced B(E2) and quadruple moment of the first 2^+ state. Data analyzed using GOSIA2 which allows a simultaneous least-squares fit of matrix elements in the target and projectile systems.

Sub-barrier Coulomb excitation using 2.86 MeV/nucleon ⁶²Fe beam and ¹⁰⁹Ag target.

⁶²Fe Levels

 $\frac{\text{E(level)}}{0.0} \quad \frac{\text{J}^{\pi}}{0^{+}} \quad \frac{\text{T}_{1/2}}{0.0}$ 877.3 2+ 5.7 ps 18 Q=-0.

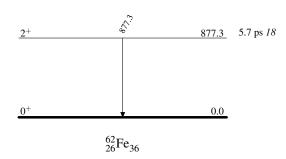
Comments

Q=-0.08 40 (2015Ga38)

Q: from comparison of 877γ to GOSIA calculations, constrained by the $T_{1/2}$ measurements in 2011Ro02 and 2010Lj01, units are eb. 2015Ga38 give static quadrupole moment=-8 efm² 40. $T_{1/2}$: deduced by evaluator from B(E2) \uparrow =0.095 29 (quoted as B(E2) \downarrow =13 W.u. +4-3 in 2015Ga38 and based on the assumption of Q=0).

γ (62Fe)

 $\frac{E_{\gamma}}{877.3}$ $\frac{E_{i}(\text{level})}{877.3}$ $\frac{J_{i}^{\pi}}{2^{+}}$ $\frac{E_{f}}{0.0}$ $\frac{J_{f}^{\pi}}{0}$


Comments

 I_{γ} : 210 40 relative to I_{γ} =1520 40 and 2300 60 for the 311 γ and 415 γ in 109 Ag target excitation, respectively. Uncertainties due to background subtraction and relative efficiency were included.

B(E2)(W.u.)=14.0 +13-11 (2015Ga38, from minimization of the two-dimensional χ^2 surface constrained by the T_{1/2} measurements in 2011Ro02 and 2010Lj01, and 13 +4-3 by projecting the χ^2 surface, assuming Q=0).

Coulomb excitation 2015Ga38

Level Scheme

