$_{26}^{62}$ Fe₃₆-1 #### 64 Ni(238 U,X γ) 2017Kl01 ### History | Type | Author | Citation | Literature Cutoff Date | | |-----------------|---|------------------|------------------------|--| | Full Evaluation | Balraj Singh, Huang Xiaolong, and Wang Xianghan | NDS 204,1 (2025) | 30-Jun-2023 | | Multinucleon transfer reactions. 2017Kl01: $E(^{238}U)=6.5$ MeV/nucleon, target=1.25 mg/cm² thick ⁶⁴Ni. Measured $\Delta E-E$ energy spectrum for target-like reaction products, mass-over-charge ratio of the ions from tof, Ey, Iy, (recoil ions)y-coin, level lifetimes by recoil distance Doppler shift (RDDS) method using Orsay universal plunger system (OUPS). Particles were detected using large-acceptance variable mode spectrometer VAMOS++. The Gamma rays were detected using AGATA array of 19 HPGe crystals at GANIL facility. Deduced levels, B(E2). Comparison with large-scale shell-model calculations, and with beyond-mean-field CHFB+5DCH calculations using Gogny D1S interaction. 2011Di04 conference report is from the same group. Levels, J^{π} , and gamma rays shown according to the γ -spectrum shown in Fig. 3 of 2017Kl01. ## ⁶²Fe Levels | E(level) | \mathbf{J}^{π} | T _{1/2} | | Comments | | | | | |--|--|------------------|----------------------------------|---|-------|----------------------------------|--|--| | 0.0
877.3
2176.5
3015.7
3387.8 | 0 ⁺
2 ⁺
4 ⁺
5 ⁻
6 ⁺ | 0.60 ps | | $T_{1/2}$: measured mean lifetime τ =0.86 ps 25 using RDDS method (2017K101). 2017K101 state that 27% of the intensity of the 4 ⁺ state is fed from the 6 ⁺ state with an effective mean lifetime of 9.5 ps 24, 25% via 5 ⁻ state with an effective mean lifetime of 58 ps 50, and 14% through undetected transitions with an effective mean lifetime of 75 ps 75. 2017K101 used their measured mean lifetime τ =1.537 ps 76(stat) 150(syst) for the first 2 ⁺ state in ⁶⁴ Ni to constrain the offset parameter for the distance. | | | | | | γ (62Fe) | | | | | | | | | | E_{γ}^{\dagger} | E_i (leve | l) J_i^{π} | E_f | J_f^π | Mult. | Comments | | | | 839.3
877.3
1211.3
1299.2 | 3015.7
877.3
3387.8
2176.5 | 2+ | 2176.5
0.0
2176.5
877.3 | 0 0 ⁺
5 4 ⁺ | [E2] | B(E2)↓=0.0256 +105-58 (2017Kl01) | | | [†] Rounded values from the Adopted Gammas. # 64 Ni(238 U,X γ) **2017Kl01** # Level Scheme