$_{26}^{62}$ Fe₃₆-1

64 Ni(238 U,X γ) 2017Kl01

History

Type	Author	Citation	Literature Cutoff Date	
Full Evaluation	Balraj Singh, Huang Xiaolong, and Wang Xianghan	NDS 204,1 (2025)	30-Jun-2023	

Multinucleon transfer reactions. 2017Kl01: $E(^{238}U)=6.5$ MeV/nucleon, target=1.25 mg/cm² thick ⁶⁴Ni. Measured $\Delta E-E$ energy spectrum for target-like reaction products, mass-over-charge ratio of the ions from tof, Ey, Iy, (recoil ions)y-coin, level lifetimes by recoil distance Doppler shift (RDDS) method using Orsay universal plunger system (OUPS). Particles were detected using large-acceptance variable mode spectrometer VAMOS++. The Gamma rays were detected using AGATA array of 19 HPGe crystals at GANIL facility. Deduced levels, B(E2). Comparison with large-scale shell-model calculations, and with beyond-mean-field CHFB+5DCH calculations using Gogny D1S interaction. 2011Di04 conference report is from the same group.

Levels, J^{π} , and gamma rays shown according to the γ -spectrum shown in Fig. 3 of 2017Kl01.

⁶²Fe Levels

E(level)	\mathbf{J}^{π}	T _{1/2}		Comments				
0.0 877.3 2176.5 3015.7 3387.8	0 ⁺ 2 ⁺ 4 ⁺ 5 ⁻ 6 ⁺	0.60 ps		$T_{1/2}$: measured mean lifetime τ =0.86 ps 25 using RDDS method (2017K101). 2017K101 state that 27% of the intensity of the 4 ⁺ state is fed from the 6 ⁺ state with an effective mean lifetime of 9.5 ps 24, 25% via 5 ⁻ state with an effective mean lifetime of 58 ps 50, and 14% through undetected transitions with an effective mean lifetime of 75 ps 75. 2017K101 used their measured mean lifetime τ =1.537 ps 76(stat) 150(syst) for the first 2 ⁺ state in ⁶⁴ Ni to constrain the offset parameter for the distance.				
γ (62Fe)								
E_{γ}^{\dagger}	E_i (leve	l) J_i^{π}	E_f	J_f^π	Mult.	Comments		
839.3 877.3 1211.3 1299.2	3015.7 877.3 3387.8 2176.5	2+	2176.5 0.0 2176.5 877.3	0 0 ⁺ 5 4 ⁺	[E2]	B(E2)↓=0.0256 +105-58 (2017Kl01)		

[†] Rounded values from the Adopted Gammas.

64 Ni(238 U,X γ) **2017Kl01**

Level Scheme

