⁵⁹Co(*α*,**n***γ*),⁶⁰Ni(³He,**p***γ*) 1977Ch04,1978ChZG

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Alan L. Nichols, Balraj Singh, Jagdish K. Tuli	NDS 113, 973 (2012)	15-Apr-2012

1977Ch04: $E\alpha$ =6-11 MeV, Ge(Li) singles and $\gamma\gamma$ coincidences as function of $E\alpha$, $n\gamma$ coincidences for $E\alpha$ =11 MeV as function of E(n) (tof), $T_{1/2}$ by recoil-distance method.

1977Ch04: $E(^{3}He)=10.75-11.2$ MeV, py coincidences, proton FWHM=16 keV, data on four γ rays associated with a p group corresponding to 2163 keV.

2831.9 level of 1977Ch04 (which should have been 2381.9 from 1683.6+698.3) withdrawn by 1978ChZG because the existence of this level was inferred from only one coincidence (1683.6γ with 454.9γ).

1974Hi06: (α ,n) E=14 MeV, $\sigma(\theta)$, deduced J-dependence of level density.

1974Gr34: (α ,n) E=14, 17.6 MeV, $\sigma(\theta, E(n))$, deduced energy and spin dependence of level density.

⁶²Cu Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments
0.0	1+		
40.90 17	2+		
243.68 17	2^{+}		
288.3 <i>3</i>	$1^+, 2^+$		
390.35 20	4+		
426.20 19	3+		
549.0 22	1^{+}		
637.9 4	1^{+}		
644.8 <i>3</i>	(2)		
675.25 21			
698.40 18	$2^+, 3^+$		
727.57 20	2^{+}		
755.63 25	(2)		
915.0 <i>3</i>			
983.2 <i>3</i>			
1023.15 23			
1051.9			
10/8.1 22			
1141.88 24			
1248.11 23			
1285.4 5			
1340.0 4			
1370 3 3		<2 ns	
1403 5 18		<2 ps	
1410 7 4			
1427.8 4			
1485.1 3			
1504.8 4			E(level): 1507.4 if this level decays by the 832γ , or 1504.9 if by the 777γ ; within the uncertainties given by 1977Ch04, this level cannot decay by both of these γ rays. Possible doublet.
1511.3 2			
1568.2 <i>3</i>			
1677.76 24			E(level): 1977Ch04 propose a doublet because there are so many modes of deexcitation. 978.8 γ reported in Table 1 of 1977Ch04 should be deleted (1978ChZG).
1710.6 4			
1736.6 4			
1745.1 4			E(level): if E γ uncertainties estimated by 1977Ch04 are valid, this is a triplet with E=1743.4, 1745.0 and 1748.9 keV (1978ChZG). Only one of these possible levels has been adopted: level with the 1046.7 γ decay.
1820.6 4			
1827.6 4			

Continued on next page (footnotes at end of table)

⁵⁹Co(α ,n γ),⁶⁰Ni(³He,p γ) 1977Ch04,1978ChZG (continued)

⁶²Cu Levels (continued)

E(level) [†]	E(level) [†]	$T_{1/2}^{\#}$	E(level) [†]	E(level) [†]
1916.6 3	2154.7 4		2518.6 5	2889.1 6
1981.5 <i>3</i>	2160.8 <i>3</i>		2622.9 4	3025.1 6
2067.5 4	2239.7 4		2638.5 5	3578 <i>3</i>
2145.8 5	2293.5 5	16.4 ps 13	2740 <i>3</i>	
2148.5 4	2443.5 4	-	2827 <i>3</i>	

[†] From least-squares fit to E γ data, reduced χ^2 =1.5. [‡] As proposed in Figure 5 of 1977Ch04.

[#] By recoil-distance Doppler-shift method. Effects of feeding from higher levels were minimized by choice of $E\alpha$ just above threshold.

$\gamma(^{62}Cu)$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\&}$	E_f	\mathbf{J}_f^{π}			Comments
40.90	2+	40.8 3		0.0	1^{+}			
243.68	2^{+}	243.4 <i>3</i>		0.0	1^{+}			
288.3	$1^+, 2^+$	247.4 <i>3</i>		40.90	2^{+}			
390.35	4+	349.3 <i>3</i>		40.90	2^{+}			
426.20	3+	385.3 <i>3</i>		40.90	2^{+}			
549.0	1^{+}	509 <i>3</i>		40.90	2^{+}			
		548 <i>3</i>		0.0	1^{+}			
637.9	1^{+}	394 <i>3</i>		243.68	2^{+}			
		597.0 <i>3</i>		40.90	2^{+}			
644.8	(2)	644.8 <i>3</i>		0.0	1^{+}			
675.25		285.0 <i>3</i>	5	390.35	4+			
		431.4 <i>3</i>	38	243.68	2^{+}			
		634.4 <i>3</i>	57	40.90	2^{+}			
698.40	$2^+, 3^+$	272.0 3		426.20	3+			
		454.9 <i>3</i>		243.68	2^{+}			
		657.5 <i>3</i>		40.90	2^{+}			
		698.3 <i>3</i>		0.0	1^{+}			
727.57	2+	484.4 <i>3</i>		243.68	2^{+}			
		685.9 <i>3</i>		40.90	2^{+}			
		727.8 <i>3</i>		0.0	1^{+}			
755.63	(2)	755.9 <i>3</i>		0.0	1^{+}			
915.0		489.2 <i>3</i>		426.20	3+			
		671.0 <i>3</i>		243.68	2^{+}			
983.2		556.9 <i>3</i>	20	426.20	3+			
		592.9 <i>3</i>	35	390.35	4+			
		942 <i>3</i>	45	40.90	2^{+}			
1023.15		385 ^{#a}		637.9	1^{+}			
		779.5 <i>3</i>	≈40	243.68	2^{+}			
		982 <i>3</i>	≈10	40.90	2^{+}			
		1023.1 <i>3</i>	≈50	0.0	1^{+}			
1051.9		376.6 <i>3</i>		675.25				
1078.1		687 <i>3</i>		390.35	4^{+}			
		1038 <i>3</i>		40.90	2^{+}			
1141.88		716.0 <i>3</i>	≈30	426.20	3+			
		751.7 <i>3</i>	≈50	390.35	4+			
		897.7 <i>3</i>	≈20	243.68	2^{+}			
		1100 3		40.90	2^{+}	I_{γ} : weak.		
1248.11		573.2 <i>3</i>	10	675.25				

Continued on next page (footnotes at end of table)

$\frac{^{59}\text{Co}(\alpha,n\gamma),^{60}\text{Ni}(^{3}\text{He},p\gamma)}{1977\text{Ch04},1978\text{ChZG}} \text{ (continued)}$

$\gamma(^{62}Cu)$ (continued)

E _i (level)	J_i^{π}	Ξ_{γ}^{\dagger}	Iγ ^{&}	E_f J	$\frac{\pi}{f}$	Comments
1248.11	821	.2 3	35	426.20 3+		
	857	.4 3	≈5 ≈5	$390.35 \ 4^+$		
	1207	.93	≈3 45	40.90 2+		E_{γ} : from 1978ChZG; not 1209.1, as given in 1977Ch04.
1285.4	586	.8 3		698.40 2 ⁺ ,	,3+	
	861	.2		426.20 3+	a +	ΔE : uncertainty>0.3 keV (1978ChZG).
	997	.13 #a_2		288.3 1,	,2'	
1346.6	1250 618	3		$40.90 \ 2^{+}$ 727 57 2 ⁺		
15 10.0	667	$\frac{1}{4a_3}$		675.25		
	1102	.9 3		243.68 2+		
	1303	#a 3		40.90 2+		
1367	1326	3		40.90 2+		
1370.3	9/9	.3 3		390.35 4+		
1405.5	1013	3		390.35 4 ⁺		
	1363	3		40.90 2+		
1410.7	427	.5 3		983.2		
1427.8	752	.5 3		675.25		
1/85 1	812	$1^{(a)}$	~20	40.90 2		
1405.1	1058	.3 3	≈ 20 ≈ 70	426.20 3+		
	1095	.3 3	≈ 10	390.35 4+		
1504.8	777	.2 3		727.57 2+		E_{γ} : listed incorrectly as 772.2 in Table 1 of 1977Ch04.
1511.0	832	.3 ^{@a} 3		675.25		
1511.3	1086	3		$426.20 \ 3^{+}$		
	1469	#a 3		40.90 2+		
1568.2	892	3		675.25		
	1141	.9 3		426.20 3+		
	1324	.63		$243.68 \ 2^+$		
1677 76	1527	3	9	40.90 2 ⁻ 1248 11		
10//./0	922	.4 3	6	755.63 (2))	
	1002	3	15	675.25		
	1040	3	14	$637.9 1^+$		
	1231	.5 5	20 28	$420.20 \ 5$ $390.35 \ 4^+$		
	1431	3	2	243.68 2+		E_{γ} : from 1978ChZG.
1710.6	1035	3	15	675.25		
1736.6	1284	.4 3	85	426.20 3 ⁺ 675.25		
1745 1	1001	.55		698 40 2 ⁺	3+	
1820.6	1430	.2.3		390.35 4 ⁺	,5	
1827.6	1401	.4 3		426.20 3+		
1916.6	545	.6 3		1370.3		
	1491	.1.3		$426.20 \ 3^{+}$ $40.90 \ 2^{+}$		
1981.5	1306	.0 3		675.25		
	1555	.6 3		426.20 3+		
2067.5	1390	3		675.25		
2145.8	775	.5 5		1370.3		
2148.5	1758	.1 3		390.35 4+		
2154.7	1481	3	≈30	675.25		

Continued on next page (footnotes at end of table)

⁵⁹Co(α ,n γ),⁶⁰Ni(³He,p γ) 1977Ch04,1978ChZG (continued)

$\gamma(^{62}Cu)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ιγ ^{&}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
2154.7	_	1728.5 3	≈70	426.20	3+	2622.9		2232.5 3	390.35	4+
2160.8		1462.5 <i>3</i>	≈90	698.40	$2^+, 3^+$	2638.5		1268.1 <i>3</i>	1370.3	
		1917.0 <i>3</i>	≈10	243.68	2+	2740		1825 <i>3</i>	915.0	
2239.7		1849.3 <i>3</i>		390.35	4+	2827		534 <i>3</i>	2293.5	
2293.5		923.1 <i>3</i>		1370.3		2889.1		595.6 <i>3</i>	2293.5	
2443.5		1195.4 <i>3</i>		1248.11		3025.1		731.6 <i>3</i>	2293.5	
2518.6		1148.2 <i>3</i>		1370.3		3578		1285 <i>3</i>	2293.5	

[†] From 1977Ch04, except for the 978.8γ, 1465γ, and 1683.6γ, which were rejected on recommendation of 1978ChZG.

[‡] From a possible triplet of levels near 1746 keV.

[#] Indicated as uncertain by 1977Ch04.

[@] In coincidence with 634.2γ , indicating decay to the 675 level, but coincidences with other gammas from that level are weak or absent, making placement uncertain (1978ChZG).

[&] Branching ratios from Figure 5 of 1977Ch04.

^{*a*} Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

⁵⁹Co(α,nγ),⁶⁰Ni(³He,pγ) 1977Ch04,1978ChZG

Level Scheme

Intensities: % photon branching from each level

5

6

⁶²₂₉Cu₃₃

7

$\frac{{}^{59}\text{Co}(\alpha,\textbf{n}\gamma),{}^{60}\text{Ni}({}^{3}\text{He},\textbf{p}\gamma)}{1977\text{Ch04},1978\text{ChZG}}$

Legend

Level Scheme (continued)

Intensities: % photon branching from each level

Coincidence

⁶²₂₉Cu₃₃