⁹Be(⁶³Mn,⁶²Crγ) **2015Br10**

History

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh, Huang Xiaolong, and Wang Xianghan NDS 204,1 (2025) 30-Jun-2023

2015Br10: 140 MeV/nucleon ⁸²Se primary beam was produced from the Coupled Cyclotron Facility at NSCL incident on ⁹Be targets. Fragments were separated and selected by the A1900 separator and impinged on a ⁹Be plunger target. Projectile-like recoils were identified by the S800 spectrograph and a detector system consisting of a 16-fold ionization chamber for energy-loss measurement and two scintillators for time-of-flight. The *γ* rays were detected using SeGA array of 15, 32-fold segmented HPGe detectors. Measured Ε*γ*, I*γ*, Doppler-shifted *γ* spectra. Deduced lifetimes using Recoil-Distance Doppler-Shift (RDDS) method with Monte Carlo simulations and decay-curve analysis. Deduced E2 strengths, intrinsic quadrupole moments, and deformation parameters. Comparisons with shell-model calculations.

Measurement of half-lives of low-lying yrast states in ⁶²Cr via one-proton knockout reaction, and data analyzed based on Monte-Carlo simulations as well as conventional decay-curve analysis, while adopting the values from the former procedure.

62Cr Levels

Q₀=Intrinsic quadrupole moment.

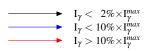
E(level)	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments
0	0+		
445 2	2+	87 ps 9	$T_{1/2}$: other: 91 ps 4 from RDDS with decay-curve analysis.
			$Q_0 = 1.36 + 8 - 6, \beta_2 = 0.33 (2015 Br 10).$
1173 <i>4</i>	4+	4.7 ps 6	T _{1/2} : other: 4.8 ps 5 from RDDS with decay-curve analysis.
			$Q_0=1.44 + 9-8, \beta_2=0.35 (2015Br10).$

[†] From Eγ values.

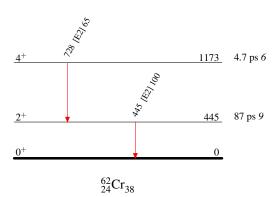
 γ (62Cr)

E_{γ}	I_{γ}^{\dagger}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	Comments
445 2	100	445	2+	0	0+	[E2]	B(E2)\place=0.0371 +43-35 (2015Br10)
728 3	65	1173	4+	445	2+	[E2]	B(E2) = 0.0589 + 79 - 62 (2015Br10)

[†] Relative intensities extracted from the best fit to the measured γ -ray spectrum based on a Monte-Carlo simulation (2015Br10).


[‡] As given by 2015Br10.

[#] From Recoil-Distance Doppler-Shift (RDDS) method, with analysis based on Monte Carlo simulations. Values from decay-curve analysis are given under comments, with probably statistical uncertainties only. The two sets are in very good agreement.


⁹Be(⁶³Mn, ⁶²Crγ) **2015Br10**

Level Scheme

Intensities: Relative I_{γ}

Legend

