⁶²₂₇Co₃₅

⁶²Ni(t,³He) **1976Aj03**

History

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Alan L. Nichols, Balraj Singh, Jagdish K. Tuli	NDS 113, 973 (2012)	15-Apr-2012

1976Aj03: E=24 MeV. 98.7% enriched target of 60 μ g/cm² thickness. Measured E(³He), I(³He), $\sigma(\theta)$ from 20° to 55° in 5° steps using Q3D magnetic spectrometer and a helix detector system, FWHM=11-20 keV, but observed width of the g.s. group is 11 keV. Absolute cross sections accurate to 20%. Deduced mass of ⁶²Co.

Measured Q value=-5296 keV 20 leads to Q(β^-)=5315 keV 20 for decay of 62 Co to 62 Ni, as adopted in 2011AuZZ and 2003Au03.

⁶²Co Levels

E(level)	$J^{\pi \dagger}$	Comments
0.0	(2^+)	
22 5	(5+)	E(level), J^{π} : 1976Aj03 state (2 ⁺ and 5 ⁺) for a doublet. Not clear whether 22-keV group is a doublet with $J^{\pi}=2^+$ and 5 ⁺ , or whether 22-keV group and g.s. form a doublet. The evaluators consider the latter possibility as more likely.
230 5	(3 ⁺)	
244 5	$(3^+, 4^+)$	
504 <i>5</i>	(1^{+})	
530 8		
610 5	$(5^+, 6^+)$	
701 5	(2^{+})	
912 [‡] 5		
1170? 10		
1218 5	$(5^+, 6^+)$	
1271 [‡] 5	$(3^+, 4^+)$	
1360 [‡] 5	(2^{+})	
1470 8	$(1^+, 2^+, 3^+)$	
1542 8	$(5^+, 6^+)$	
1660 15		
1695 10		
1803 10		
1820 10		
1873 [‡] <i>15</i>		
1980 20		
2120 15		
2135 [‡] 15		
2165 20		

[†] Based on comparison of empirical curves of $\sigma(\theta)$ for ⁶²Co levels with those for lighter nickel isotopes to levels of known J^{π} values. 1976Aj03 state that lack of $\sigma(\theta)$ data at forward angles below 20° places limits on J^{π} , without specifying whether these are upper or lower limits. The evaluators consider all spin assignments proposed here as tentative and have not carried them over to the Adopted Levels.

[‡] Probable doublet from the width of the ³He group.