### <sup>61</sup>Ga ε decay (167 ms) 1999Oi01,2002We07

|                 | Histor                        | ſy                |                        |
|-----------------|-------------------------------|-------------------|------------------------|
| Туре            | Author                        | Citation          | Literature Cutoff Date |
| Full Evaluation | Kazimierz Zuber, Balraj Singh | NDS 125, 1 (2015) | 25-Jan-2015            |

Parent: <sup>61</sup>Ga: E=0.0;  $J^{\pi}=3/2^{-}$ ;  $T_{1/2}=167$  ms 3;  $Q(\varepsilon)=9210$  40;  $\%\varepsilon+\%\beta^{+}$  decay=100.0

 ${}^{61}$ Ga-J<sup> $\pi$ </sup>,T<sub>1/2</sub>: From  ${}^{61}$ Ga Adopted Levels.

<sup>61</sup>Ga-Q( $\varepsilon$ ): From 2012Wa38.

1999Oi01: <sup>61</sup>Ga source produced in fusion-evaporation reaction using a 121-MeV <sup>36</sup>Ar beam from the heavy-ion accelerator UNILAC at GSI and 1.9 mg/cm<sup>2</sup> natural Si-target. Evaporation residues were stopped in FEBIAD-B2-C ion source and mass separated by on-line mass separator. Using two Ge detectors, cylindrical plastic scintillator for detection positrons and 2 mm thick plastic scintillator in front of Ge detectors. Measured β-gated γ spectrum, Eγ, Iγ, Iβ, γ(t),β(t).

2002We07: isotopes were produced in spallation reactions induced by a pulsed beam of 1.4 GeV protons from the CERN PS-booster and impinging on a zirconium oxide target (8 g/cm<sup>2</sup> of Zr). Ionization of Ga atoms was performed using the Resonance Ionization Laser Ion Source (RILIS). Ions are accelerated by a 60 kV voltage and mass separated using the high-resolution mass separator (HRS). Measured  $\beta(t)$ ,  $\beta\gamma$  coin, half-life, deduced Q( $\varepsilon$ ) and S(p). Beta Gamow-Teller strength calculations in large-scale shell-model using the Strasbourg code ANTOINE and the effective interaction KB3G.

Others:

2014Ro14: measured half-life of <sup>61</sup>Ga g.s.

1993Wi18: Using the A1200 (achromatic projectile fragment separator) radioactive beam facility at the NSCL of Michigan State University. The radioactive isotopes was produced by fragmentation of E=75 MeV/nucleon <sup>78</sup>Kr beam by 98% enriched <sup>58</sup>Ni target

a thin (3 mg/cm<sup>2</sup>) aluminum backing. Using Si detector telescope and  $\beta$  segmented plastic scintillator, measured half-life. From RADLIST code, deduced total decay energy is 9236 keV 98 agrees with 9210 keV 40 from Q( $\varepsilon$ ) value.

#### <sup>61</sup>Zn Levels

Note that in 1999-NDS (1999Bh04), 88.2, 418.3, and 756.0 levels were erroneously assigned half-lives of <430 ms, 0.14 s 7 and <130 ms, respectively. These half-lives in 1999Oi01 simply refer to the half-life of the decaying  $^{61}$ Ga isotope.

| E(level) <sup>†</sup> | $J^{\pi \ddagger}$ |
|-----------------------|--------------------|
| 0.0                   | 3/2-               |
| 88.2 7                | $1/2^{-}$          |
| 123.3 7               | 5/2-               |
| 418.3 6               | $3/2^{-}$          |
| 756.0 7               | $5/2^{-}$          |
| 938.2 7               | $1/2^{-}$          |
| 1362.0? 10            |                    |

<sup>†</sup> From a least-squares fit to the  $E\gamma$  data.

<sup>‡</sup> From Adopted Levels.

#### $\varepsilon, \beta^+$ radiations

Experimental and theoretical Gamow-Teller (B(GT)) strengths listed here are from 2002We07.

| E(decay)                        | E(level) | $\mathrm{I}\beta^+$ <sup>†</sup> | Ιε <sup>†</sup>          | Log ft | $\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$ | Comments                                                                                                                                                                                          |
|---------------------------------|----------|----------------------------------|--------------------------|--------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $(7.85 \times 10^3 \ddagger 4)$ | 1362.0?  | ≤0.010                           | $\leq 2. \times 10^{-5}$ | ≥7.3   | ≤0.01                                         | av E $\beta$ =3208 20; $\varepsilon$ K=0.00193 4; $\varepsilon$ L=0.000212 4;<br>$\varepsilon$ M+=3.77×10 <sup>-5</sup> 7                                                                         |
| (8.27×10 <sup>3</sup> 4)        | 938.2    | 0.68 18                          | 0.0012 3                 | 5.6    | 0.68 18                                       | av E $\beta$ =3416 20; $\varepsilon$ K=0.00161 3; $\varepsilon$ L=0.000178 3;<br>$\varepsilon$ M+=3.16×10 <sup>-5</sup> 6<br>(B(GT)) <sub>exp</sub> =0.2 <i>I</i> (B(GT)) <sub>theor</sub> =0.18. |

## $^{61}$ Ga $\varepsilon$ decay (167 ms) **1999Oi01,2002We07** (continued)

## $\epsilon, \beta^+$ radiations (continued)

| E(decay)                 | E(level) | $I\beta^+$ † | $\mathrm{I}\varepsilon^{\dagger}$ | Log ft | $\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------|----------|--------------|-----------------------------------|--------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $(8.45 \times 10^3 \ 4)$ | 756.0    | 0.86 24      | 0.0015 4                          | 5.5    | 0.86 24                                       | av E $\beta$ =3506 20; $\varepsilon$ K=0.001501 25; $\varepsilon$ L=0.000165 3;<br>$\varepsilon$ M+=2.94×10 <sup>-5</sup> 5                                                                                                                                                                                                                                                                                                                  |
| (8.79×10 <sup>3</sup> 4) | 418.3    | 1.3 4        | 0.0019 6                          | 5.4    | 1.3 4                                         | $(B(GT))_{exp} = 0.02 \ l \ (B(GT))_{theor} = 0.00033.$<br>av $E\beta = 3672 \ 20; \ \varepsilon K = 0.001316 \ 21; \ \varepsilon L = 0.0001448 \ 2; \ \varepsilon M + = 2.57 \times 10^{-5} \ 4$<br>$(B(GT))_{exp} = 0.0024 \ (B(GT))_{exp} = 0.0024$                                                                                                                                                                                       |
| $(9.09 \times 10^3 \ 4)$ | 123.3    | 1.2 4        | 0.0016 5                          | 5.5    | 1.2 4                                         | $(B(G1))_{exp}=0.02\ T\ (B(G1))_{theor}=0.0034.$<br>av $E\beta=3818\ 20;\ \varepsilon K=0.001179\ I8;\ \varepsilon L=0.0001297\ 2;\ \varepsilon M+=2.31\times10^{-5}\ 4$                                                                                                                                                                                                                                                                     |
| $(9.12 \times 10^3 4)$   | 88.2     | 1.9 6        | 0.0025 8                          | 5.4    | 1.9 6                                         | $\begin{array}{l} (\mathrm{B}(\mathrm{GT}))_{\mathrm{exp}} = 0.02 \ I \ (\mathrm{B}(\mathrm{GT}))_{\mathrm{theor}} = 0.0012. \\ \mathrm{av} \ \mathrm{E}\beta = 3835 \ 20; \ \varepsilon\mathrm{K} = 0.001164 \ I8; \ \varepsilon\mathrm{L} = 0.0001280 \ I; \\ \varepsilon\mathrm{M} + = 2.28 \times 10^{-5} \ 4 \end{array}$                                                                                                               |
| (9.21×10 <sup>3</sup> 4) | 0.0      | 93.9 10      | 0.120 2                           | 3.7    | 94.0 10                                       | $\begin{array}{l} (\mathrm{B}(\mathrm{GT}))_{\mathrm{exp}} = 0.04 \ l & (\mathrm{B}(\mathrm{GT}))_{\mathrm{theor}} = 0.0068. \\ \mathrm{av} \ \mathrm{E}\beta = 3879 \ 20; \ \varepsilon \mathrm{K} = 0.001127 \ 17; \ \varepsilon \mathrm{L} = 0.0001240 \ 1; \\ \varepsilon \mathrm{M} + = 2.20 \times 10^{-5} \ 4 \\ (\mathrm{B}(\mathrm{GT}))_{\mathrm{exp}} = 0.28 \ 7  (\mathrm{B}(\mathrm{GT}))_{\mathrm{theor}} = 0.35. \end{array}$ |

<sup>†</sup> Absolute intensity per 100 decays.

<sup>‡</sup> Existence of this branch is questionable.

# $\gamma$ (<sup>61</sup>Zn)

I $\gamma$  normalization: Summed transition intensity=6 *I*, based on level scheme of 2002We07 with I( $\varepsilon + \beta^+$ )(g.s.)=94.0% *10* and upper limit for the delayed proton emission probability of 0.25% (2002We07).

| $E_{\gamma}^{\dagger}$      | $I_{\gamma}^{\dagger}\&$ | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_f = \mathbf{J}_f^{\pi}$ | Mult. <sup>@</sup> | $\delta^{@}$ | $\alpha^{a}$    | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------|--------------------------|---------------|----------------------|-------------------------------------|--------------------|--------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 87.6 <sup>‡</sup> <i>10</i> | 100 16                   | 88.2          | 1/2-                 | 0.0 3/2                             | - (M1+E2)          | ≈0.2         | 0.126 <i>21</i> | $\alpha(K)=0.112 \ 19; \ \alpha(L)=0.0125 \ 23; \\ \alpha(M)=0.0018 \ 4; \ \alpha(N)=6.3\times10^{-5} \ 10 \\ \alpha: assuming \ 25\% uncertainty on \\ \delta(E2/M1). \\ \delta: \ 2002 We07 \ suggest \ \delta=0.2 \ or \ 3.8 \\ based on \ A_2=-0.03 \ 3 \ for the \ 88\gamma \ in \\ \gamma(\theta) \ data \ from \ 1982 Sm01. \ Lower \\ value \ is \ adopted \ here, \ higher \ value \\ will \ suggest \ a \ long \ lifetime \ for \ the \\ level. \\ Additional \\ information \ 1. \\ \end{cases}$ |
| 122.9 <sup>‡</sup> 10       | 62 11                    | 123.3         | 5/2-                 | 0.0 3/2                             | - M1+E2            | -0.05 2      | 0.0352 8        | Additional<br>information 2.<br>δ: from Adopted Gammas.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 295.5 <sup>#b</sup>         | ≤2 <b>#</b>              | 418.3         | $3/2^{-}$            | 123.3 5/2                           | - (M1+E2)          | -0.44 37     | 0.0051 19       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 330                         | 4 1                      | 418.3         | 3/2-                 | 88.2 1/2                            | - (M1+E2)          | +0.27 13     | 0.0032 4        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 337.5 <sup>#b</sup>         | ≤2 <b>#</b>              | 756.0         | $5/2^{-}$            | 418.3 3/2                           | _                  |              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 418.4 <sup>‡</sup> 8        | 72 12                    | 418.3         | 3/2-                 | 0.0 3/2                             | - M1+E2            | -0.10 5      |                 | Additional information 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 520                         | 92                       | 938.2         | $1/2^{-}$            | 418.3 3/2                           | _                  |              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 633 <sup>#b</sup>           | ≤1 <sup>#</sup>          | 756.0         | $5/2^{-}$            | 123.3 5/2                           | -                  |              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 754.5 <sup>‡</sup> 12       | 44 8                     | 756.0         | 5/2-                 | 0.0 3/2                             | - M1+E2            | -0.07 4      |                 | Additional information 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

Continued on next page (footnotes at end of table)

# <sup>61</sup>Ga ε decay (167 ms) **1999Oi01,2002We07** (continued)

# $\gamma(^{61}$ Zn) (continued)

| $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}\&$ | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_{f}$ | $\mathbf{J}_f^{\pi}$ | Comments                  |
|------------------------|--------------------------|---------------|----------------------|------------------|----------------------|---------------------------|
| 850                    | 6 2                      | 938.2         | $1/2^{-}$            | 88.2             | $1/2^{-}$            |                           |
| 938                    | 21 4                     | 938.2         | $1/2^{-}$            | 0.0              | 3/2-                 | Additional information 5. |
| 1362 <sup>#b</sup>     | ≤0.5 <sup>#</sup>        | 1362.0?       |                      | 0.0              | 3/2-                 | Additional information 6. |

<sup>†</sup> From 2002We07 unless otherwise stated.

<sup>‡</sup> From 1999Oi01. The corresponding value in 2002We07 is given without uncertainty.

<sup>#</sup> 2002We07 quote energy from high-spin studies by 1982Sm01 and 1984Th07. This  $\gamma$  not observed in 2002We07, only an upper limit of intensity is given.

<sup>@</sup> From Adopted Gammas.

<sup>&</sup> For absolute intensity per 100 decays, multiply by 0.019 4.

<sup>*a*</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

<sup>b</sup> Placement of transition in the level scheme is uncertain.

## <sup>61</sup>Ga ε decay (167 ms) 1999Oi01,2002We07



 ${}^{61}_{30}$ Zn<sub>31</sub>