Adopted Levels

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Balraj Singh	ENSDF	25-Mar-2019		

 $Q(\beta^{-})=1199\times 10^{1} 89$; $S(n)=534\times 10^{1} 92$; S(p)=15470 SY; $Q(\alpha)=-1194\times 10^{1} 158 2017$ Walo

Estimated uncertainty=940 for S(p) (2017Wa10).

 $S(2n)=8820\ 910$, $S(2p)=34780\ 980\ (syst)\ (2017Wa10)$. $Q(\beta^{-}n)=8330\ 890\ and\ Q(\beta^{-}2n)=1460\ 890\ deduced$ by evaluator from mass excess for ⁶¹V in 2017Wa10, and mass excesses for ⁶⁰Cr and ⁵⁹Cr from measurement by 2018Mo14.

1992We04: first identification of ⁶¹V in fragmentation of a 500 MeV/nucleon ⁸⁶Kr beam incident on a Be target and identified by a zero-degree magnetic spectrometer and separated by FRS at GSI facility. Determined production cross section.

1999So20 (also 2001So07 and 1999Le67): ⁶¹V produced in the fragmentation of 60.4 MeV/nucleon ⁸⁶Kr beam with ⁵⁸Ni target; LISE3 spectrometer at GANIL facility. Measured half-life of decay of ⁶¹V.

2003So02: 61 V produced in fragmentation of 76 Ge ${}^{30+}$ beam on 58 Ni target. LISE3 achromatic spectrometer used to separate fragments; measured half-life of 61 V decay and probability of delayed-neutron decay from the observation of 2^+ to 0^+ transition in 60 Cr.

2011Da08 (also 2002MaZN thesis): ⁶¹Ti produced in the fragmentation of 57.8 MeV/nucleon ⁸⁶Kr beam impinged on 50 mg/cm² thick tantalum target using LISE-2000 spectrometer at GANIL facility. Detector system included a three-element Si-detector telescope containing a double-sided silicon-strip detector (DSSSD) backed by a Si(Li) detector and surrounded by four clover type EXOGAM Ge detectors. Product identified by mass, atomic number, charge, energy loss and time-of-flight methods. Measured half-life.

2014Su07: ⁶¹V beam produced from fragmentation of 120 MeV/nucleon ⁷⁶Ge beam on ⁹Be target, followed by mass separation by A1900 separator at NSCL-MSU accelerator facility. The resulting cocktail ion beam was transported to the Beta Counting System and implanted into a 1-mm-thick double-sided silicon strip detector. Measured $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin using SeGA array. Deduced levels J, π , estimate of % β ⁻n Comparisons made with shell-model calculations.

No information about the decay of 61 Ti to 61 V is available.

A very weak γ ray at 126 2 reported by 2002MaZN was seen in coincidence with heavy ions. This may either be an isomeric transition in ⁶¹Ti or a γ ray in ⁶¹V emitted by the decay of ⁶¹Ti. But a 127 2 γ has also been reported by 2005Ga01 in the decay of ⁶¹V to ⁶¹Cr.

Mass measurement by time-of-flight method: 2011Es06.

Theoretical calculations: 1995Ri05 Shell model calculations (predicted spin, binding energy, mass defect).

Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for three references for structure calculations.

⁶¹V Levels

E(level)	J^{π}	T _{1/2}	Comments	
0	(3/2 ⁻ ,5/2 ⁻)	48.3 ms 10	%β ⁻ =100; %β ⁻ n>10 (2014Su07); %β ⁻ 2n=? %β ⁻ n>10 (2014Su07) from observation and absolute intensity of 644-keV transition in ⁶⁰ Cr. Other %β ⁻ n≥6 (2003So02). Theoretical T _{1/2} =27.1 ms, %β ⁻ n=12.7, %β ⁻ 2n=0.0 (2003Mo09). Theoretical T _{1/2} =63.1 ms, %β ⁻ n=1.5, %β ⁻ 2n=0.1 (2016Ma12). J ^π : possible configuration=π3/2[321] of f _{7/2} orbital (2005Ga01), assuming small quadrupole deformation. 2014Su07 assign 3/2 ⁻ or 5/2 ⁻ , former is more likely if ground state is prolate deformed, the latter is possible if oblate deformation; further 5/2 ⁻ is less likely due to lack of observation of population of 4 ⁺ level in ⁶⁰ Cr by β ⁻ n decay mode of ⁶¹ V. A 7/2 ⁻ spherical configuration was predicted in shell-model calculations (1995Ri05), and 5/2 ⁻ in theoretical calculations by 1997Mo25. T _{1/2} : weighted average of 49 ms <i>I</i> (2014Su07, β(fragment) correlations, decay curve, including daughter and grand-daughter decays, fitted with exponential and constant background); 52.6 ms 42 (2011Da08,2002MaZN, β(fragment) correlations, decay curve, including daughter and grand- daughter decays, fitted with exponential and constant background); and 47.0 ms <i>I</i> 2 (2003So02, timing of β and ⁶¹ V correlated events, also 47 ms <i>I</i> in 2005Ga01; 41 ms 1 quoted in table 3 of 2005Ga01 is a misprint). Other: 43 ms 7	

Continued on next page (footnotes at end of table)

 $Q(\beta^{-})=11987\ 890$ from mass excess (⁶¹V)=-30510 890 (2017Wa10) and measured mass excess (⁶¹Cr)=-42496.5 18 (2018Mo14). 2017Wa10 give mass excess (⁶¹Cr)=-42480 100.

Adopted Levels (continued)

⁶¹V Levels (continued)

E(level) J^{π} $T_{1/2}$

Comments

(1999So20, older value from the same experimental group as 2003So02, although a different reaction was used to produce the 61 V activity).