Adopted Levels, Gammas

	Hi	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	ENSDF	25-Mar-2019

 $Q(\beta^{-})=14160 SY; S(n)=2090 SY; S(p)=19590 SY; Q(\alpha)=-11900 SY$ 2017Wa10

Estimated uncertainties (2017Wa10): 980 for $Q(\beta^{-})$, 500 for S(n), 640 for S(p), 570 for $Q(\alpha)$.

 $Q(\beta^{-}n)=8820\ 460$, $S(2n)=6980\ 450\ (syst,2017Wa10)$. $S(2p)=38160\ (1997Mo25,theory)$. $Q(\beta^{-}2n)=5340\ 430\ deduced$ by evaluator from mass excesses in 2017Wa10.

⁶¹Sc nuclide has been identified but no information about its decay to ⁶¹Ti is available.

1997Be70: ⁶¹Ti identified in projectile fission of a 750 MeV/nucleon ²³⁸U beam incident on a Be target, followed by fragment separation using FRS at GSI facility. Measured production cross section. Nine events were assigned to ⁶¹Ti with corresponding cross section of 2.5 nb.

2011Da08 (also 2002MaZN thesis): ⁶¹Ti produced in the fragmentation of 57.8 MeV/nucleon ⁸⁶Kr beam impinged on 50 mg/cm² thick tantalum target using LISE-2000 spectrometer at GANIL facility. Detector system included a three-element Si-detector telescope containing a double-sided silicon-strip detector (DSSSD) backed by a Si(Li) detector and surrounded by four clover type EXOGAM Ge detectors. Product identified by mass, atomic number, charge, energy loss and time-of-flight methods. Measured half-life.

2019Wi04: two nanosecond isomers and gamma rays identified in this work from ⁹Be(²³⁸U,X) reaction at RIBF-RIKEN.

A very weak γ ray at 126 2 reported by 2002MaZN was seen in coincidence with heavy ions. This may either be an isomeric transition in ⁶¹Ti or a γ ray in ⁶¹V emitted by the decay of ⁶¹Ti. But a 127 2 γ has also been reported by 2005Ga01 in the decay of ⁶¹V to ⁶¹Cr. The 126 γ seen by 2002MaZN is probably the same as the 125.0 γ by 2019Wi04.

Theoretical calculations: 1995Ri05 Shell model calculations: predicted spin, binding energy, and mass defect. Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for four references for structure calculations.

⁶¹Ti Levels

Cross Reference (XREF) Flags

A ${}^{9}\text{Be}({}^{238}\text{U},\text{X}\gamma)$:isomers

E(level)	$J^{\pi \dagger}$	T _{1/2}	XREF	Comments
0.0	(1/2 ⁻)	15 ms 4	A	$\%\beta^-=100; \ \%\beta^-n=?; \ \%\beta^-2n=?$ Theoretical $T_{1/2}=22.2$ ms, $\%\beta^-n=2.5, \ \%\beta^-2n=0.8$ (2003Mo09). Theoretical $T_{1/2}=19.8$ ms, $\%\beta^-n=1.3, \ \%\beta^-2n=0.4$ (2016Ma12). $T_{1/2}$: from 2011Da08, based on time correlation between implantation and β -ray events in the DSSSD. Fitting procedure included five parameters: β -detection efficiency, background rate, mother, daughter and granddaughter half-lives.
125.0 5	$(5/2^{-})$	200 ns 28	A	%IT=100
700.1 7	(9/2+)	354 ns 69	A	$^{1}_{1/2}$: from (implants)(123.0 γ) correlated decay curve in 9 Be(238 U,X γ) (2019Wi04). %IT=100 T _{1/2} : from (implants)(575.1 γ) correlated decay curve in 9 Be(238 U,X γ) (2019Wi04).

[†] From predictions of large-scale shell-model calculations using LNPS interaction (2019Wi04). Also shell-model calculations by 1995Ri05.

Adopted Levels, Gammas (continued)									
γ (⁶¹ Ti)									
E _i (level)	J_i^π	Eγ	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments	
125.0	(5/2 ⁻)	125.0 5	100	0.0	(1/2 ⁻)	[E2]	0.143 3	B(E2)(W.u.)=5.7 8 The 125.0 γ may be the same as 126 keV 2 reported by 2002MaZN from its coincidence with heavy ions.	
700.1	$(9/2^+)$	575.1 5	100	125.0	(5/2 ⁻)	[M2]		B(M2)(W.u.)=0.090 18	

[†] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Adopted Levels, Gammas

Level Scheme

61 22 Ti₃₉