History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh	ENSDF	20-Jan-2020				

Parent: ⁶¹Co: E=0.0; $J^{\pi}=7/2^-$; $T_{1/2}=1.649$ h 5; $Q(\beta^-)=1323.8$ 8; $\%\beta^-$ decay=100.0 ${}^{61}\text{Co-J}^{\pi}, T_{1/2}$: From ${}^{61}\text{Co}$ Adopted Levels.

⁶¹Co-Q(β^{-}): From 2017Wa10.

1969Ki09: source produced in ⁶¹Ni(n,p) reaction and separated by a chemical method. Measured E γ , I γ , β . Source produced by ⁶⁴Ni(d, α), ⁶¹Ni(n,p), ⁵⁹Co(t,p) (see references in 1978LeZA compilation), and ⁵⁸Fe(α ,p) (1973Sc09). Others: 1956Nu02, 1968Ka21, 1971VoZX, 1972GeZG.

From RADLIST code, deduced total decay energy is 1324 keV 5 agrees perfectly with 1323.8 keV 8 from $Q(\beta^{-})$ value.

⁶¹Ni Levels

E(level) [†]	$J^{\pi \ddagger}$
0.0	3/2 ⁻
67.412 <i>10</i>	5/2 ⁻
917.5 7	(7/2) ⁻

[†] From least-squares fit to $E\gamma$ data.

[‡] From Adopted Levels.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log <i>ft</i>	Comments
(406.3 11)	917.5	4.4 4	4.78 4	av E β =126.95 39
(1256.4 8)	67.412	95.6 4	5.240 3	av E β =475.03 42
				Measured $F\beta = 1220 \ 40 \ (1956Nu02) \ 1220 \ 5 \ (1969Ki09)$

[†] β^- branches are obtained from I(γ +ce) imbalance at each level.

[‡] Absolute intensity per 100 decays.

$\gamma(^{61}\text{Ni})$

Iy normalization: $I(\gamma+ce)(67.4\gamma+917.5\gamma)=100$, assuming no β^- feeding to g.s.

$$\frac{E_{\gamma}}{67.412 \ 10} \quad \frac{I_{\gamma}^{\dagger \#}}{96} \quad \frac{E_{i}(\text{level})}{67.412} \quad \frac{J_{i}^{\pi}}{5/2^{-}} \quad \frac{E_{f}}{0.0} \quad \frac{J_{f}^{\pi}}{3/2^{-}} \quad \frac{\text{Mult.}^{\ddagger}}{(\text{M1}+\text{E2})} \quad \frac{\delta^{\ddagger}}{0.0076 \ 5} \quad \frac{\alpha^{\textcircled{0}}}{0.137} \quad \frac{\alpha^{\textcircled{0}}}{\alpha(\text{K})=0.1225 \ 18; \ \alpha(\text{L})=0.01262 \ 18; \ \alpha(\text{M})=0.001778 \ 25; \ \alpha(\text{M})=0.001778 \ 25; \ \alpha(\text{M})=7.38\times10^{-5} \ 11} \text{E}_{\gamma}; \ \text{from Adopted dataset. } \text{E}_{\gamma}=67.5 \ 5 \ (1972\text{GeZG}). \ \text{Additional information 1.}$$

[†] Relative intensity normalized to $I\gamma(67.415\gamma)=96$.

[‡] From Adopted Gammas.

⁶¹Co β^- decay (1.649 h) **1969Ki09** (continued)

$\gamma(^{61}Ni)$ (continued)

 $^{\#}$ For absolute intensity per 100 decays, multiply by 0.882 4.

^(a) Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

⁶¹Co β^- decay (1.649 h) 1969Ki09

Decay Scheme

