⁶⁰Ni(d,p),(pol d,p) **1967Co27,2013Sc06,1973Ay03**

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Balraj Singh	ENSDF	20-Jan-2020			

No changes made since the 2015 update.

1967Co27: (d,p): E=7.5 MeV. Measured $\sigma(E(p),\theta)$, 23 angles (c.m.) from $\approx 7^{\circ}$ to 172° , magnetic spectrograph, enriched target, FWHM=10 keV.

2013Sc06, 2013ScZZ: (d,p), E(d)=10 MeV beam from WNSL-Yale tandem accelerator facility. Measured proton spectra, $\sigma(\theta)$, and spectroscopic factors C²S for 19 proton groups using a split-pole Enge spectrograph. FWHM \approx 33 keV. Target=204 μ g/cm² thick 99.7% enriched. Deduced levels, J, π . DWBA analysis. Comparison with shell-model calculations.

The main purpose of the neutron adding and neutron removal reaction studies by 2013Sc06 was to obtain occupancies of neutron orbitals, proton vacancies, and energy centroids of neutron, neutron-holes, proton-single particle excitations in ⁶⁰Ni and ⁶²Ni, and thereby investigate closure of 0f_{7/2} shell. Some data details of this study are supplied in 2013ScZZ. Others:

1964Fu04: (d,p): E=12 MeV. Measured $\sigma(E(p),\theta)$, 7 angles from 5° to 50°, magnetic spectrograph, enriched target, FWHM=10 keV.

1973Ay03: (pol d,p): E=10 MeV. Measured vector analyzing power, θ (c.m.) $\approx 2.5^{\circ} - 70^{\circ}$, semi detector and magnetic spectrograph, enriched target.

For gross structure of γ -spectrum as a function of E(p) in (d,p γ), see 1968Na15.

1975Ba28 (E=3.0-4.5 MeV, θ (c.m.)≈ 10°−135°, Levels at 4762, 4907 keV), L-values and S factors.

1977St07 (E=2.8 MeV, 23 angles from 50° to 160°, FWHM \approx 30 keV), 22 groups up to 5.3 MeV, $\sigma(\theta)$, L-values and S-factor. Other: 1962Co02 (θ =9°,15°,25°,40°),

1991We07: E(d)=2.7, 3.0, 3.3 MeV, FWHM \approx 22 keV; measured $\sigma(\theta)$, DWBA analysis. Deduced density of valence neutron distributions and density differences between isotopes.

Most data listed here are from 1967Co27.

 $d\sigma/d\Omega$ in mb/sr (2013ScZZ)

Level 15° 35° 0 5.29 0.93 67 0.39 0.77 283 4.18 0.55 0.022 656 0.13 909 0.046 0.075 0.44 1100 0.11 1132 0.080 0.10 1185 0.97 0.22 1455 0.067 0.072 1729 0.11 0.029 2122 0.59 0.91 2124 0.94 0.19 0.42 0.099 2640 2697 1.09 0.79 0.29 2765 0.13 2801 0.055 0.091 2905 0.61 3062 0.42 3487 0.076 0.15 3506 2.39 1.91 Level energies are quoted by 2013Sc06 from 1999-NDS (1999Bh04); values are nearly the same in Adopted Levels here The uncertainties in cross sections are $\approx 4\%$ for $\sigma > 1$ mb/sr, $\approx 7\%$ for 0.1< σ < 1.0 mb/sr, and \approx 18% for σ <0.1 mb/sr at their respective maxima. The uncertainties arising from possible contaminants or previously unidentified states for very weak transitions could be ≈ 0.02 mb/sr.

⁶¹Ni Levels

E(level) [†]	$J^{\pi \ddagger}$	L#	$(2J+1)C^2S^{@}$	Comments
05	3/2-	1	1.49	(2J+1)C ² S: 1.76 (2013Sc06,2013ScZZ).
				$(d\sigma/d\Omega)_{max}$ =3.60 mb/sr.
68 5	5/2-	3	3.04	$(d\sigma/d\Omega)_{max} = 0.650 \text{ mb/sr.}$
284 5	$1/2^{-}$	1	1.23	$(2J+1)C^2S: 1.32 (2013Sc06, 2013ScZZ).$
				$(d\sigma/d\Omega)_{max}$ =3.20 mb/sr.
661 5		1	0.053	$(2J+1)C^2S: 0.04 \text{ for } J^{\pi}=1/2^-$ (2013Sc06,2013ScZZ).
				$(d\sigma/d\Omega)_{max} = 0.151 \text{ mb/sr.}$
916 10		(3)	0.345	$(d\sigma/d\Omega)_{max} = 0.080 \text{ mb/sr.}$
1020 10		и		$(d\sigma/d\Omega)_{max} = 0.029 \text{ mb/sr.}$
1106 10		1	0.108	$(2J+1)C^2S$: 0.12 for $J^{\pi}=3/2^{-}$ (2013Sc06,2013ScZZ).
1120 10			0.400	$(d\sigma/d\Omega)_{max} = 0.345$ mb/sr.
1139 10	a /a	3	0.400	$(d\sigma/d\Omega)_{max} = 0.098 \text{ mb/sr.}$
1192 10	3/2-	1	0.255	$(2J+1)C^2S: 0.26 (2013Sc06, 2013ScZZ).$
1462 10		20	0.16	$(d\sigma/d\Omega)_{max} = 0.825 \text{ mb/sr.}$
1462 10		3	0.16	$(d\sigma/d\Omega)_{max} = 0.105 \text{ mb/sr.}$
1018 10		1	0.044	$(d\sigma/ds_2)_{max} = 0.05 \text{ mD/sr.}$
1/3/10		1	0.044	$(2J+1)C^{2}S^{2} = 0.150 \text{ m}^{2} = 3/2 (2013SC06, 2013SCZZ).$
1914 10		а		$(d\sigma/d\Omega)_{max} = 0.139 \text{ mb/sr.}$
1014 10		а		$(d\sigma/d\Omega)_{max} = 0.017 \text{ mb/sr}.$
2009 10		а		$(d\sigma/d\Omega) = -0.021 \text{ mb/sr}$
2009 10		а		$(d\sigma/d\Omega)_{max} = 0.035 \text{ mb/sr}$
2025 10	$0/2^+ \& 1/2^-$	/⊥1	8 45 0 302	$(2L+1)C^2S \cdot 0.21$ for L = 1. 1/2 ⁻ (2013Sc06 2013Sc77)
2417 10	$y_{12} \propto 1/2$	$\frac{4}{a}$	0.45,0.592	(25+1)C = 3.0.21 for $E=1, 1/2$ (20153C00,20153C222). $(d\sigma/d\Omega)_{max} = 0.035$ mb/sr
2474 10		a		$(d\sigma/d\Omega)_{max} = 0.053 \text{ mb/sr}$
2536 10		а		$(d\sigma/d\Omega)_{max} = 0.022$ mb/sr.
2602.10		а		$(d\sigma/d\Omega)_{max} = 0.031 \text{ mb/sr.}$
2648 10		1	0.087	$(2I+1)C^2S$: 0.09 (2013Sc06 2013Sc7Z)
2010 10		1	0.007	$(d\sigma/d\Omega)_{max} = 0.369 \text{ mb/sr.}$
2707 10	$5/2^{+}$	2	0.521	$(d\sigma/d\Omega)_{max} = 1.21 \text{ mb/sr.}$
2773 10	- /	1	0.054	$(2J+1)C^2S$: 0.06 for $J^{\pi}=3/2^{-}$ (2013Sc06.2013ScZZ).
				$(d\sigma/d\Omega)_{max} = 0.233 \text{ mb/sr.}$
2804 10		3	0.291	$(d\sigma/d\Omega)_{max} = 0.090 \text{ mb/sr.}$
2873 10		1	0.032	$(d\sigma/d\Omega)_{max} = 0.141 \text{ mb/sr.}$
2910 10				L: (1) in 1967Co27 is not confirmed in (α , ³ He) measurement by 2013Sc06, where
				L=3 is obtained. Thus $(2J+1)C^2S=0.014$ in 1967Co27 is not adopted.
				$(d\sigma/d\Omega)_{max} = 0.062 \text{ mb/sr.}$
3051 10		(1)	0.017	$(d\sigma/d\Omega)_{max} = 0.077 \text{ mb/sr.}$
3073 10		0	0.067	$(d\sigma/d\Omega)_{max} = 1.80 \text{ mb/sr.}$
3116 10		3	0.135	$(d\sigma/d\Omega)_{max} = 0.045 \text{ mb/sr.}$
3141 10		а		$(d\sigma/d\Omega)_{max} = 0.021$ mb/sr.
3164 10		(1)	0.007	$(d\sigma/d\Omega)_{max} = 0.031$ mb/sr.
3241 10		1	0.011	$(d\sigma/d\Omega)_{max} = 0.052 \text{ mb/sr.}$
3268 10		(1)	0.013	$(d\sigma/d\Omega)_{max} = 0.062 \text{ mb/sr.}$
3298 10		(1)	0.038	
3308 10		(1) ^b	0.038 ^b	
3370 10		1	0.022	$(d\sigma/d\Omega)_{max} = 0.105 \text{ mb/sr.}$
3427 10		1	0.045	$(d\sigma/d\Omega)_{max} = 0.217 \text{ mb/sr.}$
3448 10		2	0.050	$(d\sigma/d\Omega)_{max} = 0.132 \text{ mb/sr.}$
3473 10		u	2 120	$(d\sigma/d\Omega)_{max} = 0.031 \text{ mb/sr.}$
3492 10		4	2.120	$(d\sigma/d\Omega)_{max} = 0.305 \text{ mb/sr.}$
3507 10		2	0.840	$(d\sigma/d\Omega_{2})_{max} = 2.280 \text{ mb/sr.}$
353/10				$(d\sigma/ds_2)_{max} = 0.045 \text{ mb/sr.}$

⁶¹Ni Levels (continued)

E(level) [†]	L [#]	(2J+1)C ² S [@]	Comments
3573 10	a		$(d\sigma/d\Omega)_{max} = 0.039 \text{ mb/sr.}$
3608 10	a		$\left(\frac{d\sigma}{d\omega}\right)_{max} = 0.049 \text{ mb/sr.}$
3628 10	a		$\left(d\sigma / d\Omega \right)_{max} = 0.050 \text{ mb/sr.}$
3647 10	2	0.196	$(d\sigma/d\Omega)_{max} = 0.53 \text{ mb/sr.}$
3683 10	1	0.054	$(d\sigma/d\Omega)_{max} = 0.271$ mb/sr.
3708 10	a		$(d\sigma/d\Omega)_{max} = 0.55 \text{ mb/sr.}$
3725 10	1	0.033	$(d\sigma/d\Omega)_{max} = 0.149 \text{ mb/sr.}$
3753 10	(0)	0.131	$(d\sigma/d\Omega)_{max} = (1.5) \text{ mb/sr.}$
3791 10	(1)	0.019	$(d\sigma/d\Omega)_{max} = 0.096$ mb/sr.
3819 10	(1)	0.009	$(d\sigma/d\Omega)_{max} = 0.045 \text{ mb/sr.}$
3860 10	a		$(d\sigma/d\Omega)_{max} = 0.042 \text{ mb/sr.}$
3879 10	а		$(d\sigma/d\Omega)_{max} = 0.145 \text{ mb/sr.}$
3942 10	а		$(d\sigma/d\Omega)_{max} = 0.087 \text{ mb/sr.}$
3954 10	a		$(d\sigma/d\Omega)_{max} = 0.080 \text{ mb/sr.}$
3984 10	а		$(d\sigma/d\Omega)_{max} = 0.030 \text{ mb/sr.}$
4018 10	a		$(d\sigma/d\Omega)_{max} = 0.034 \text{ mb/sr.}$
4044 10	(1)	0.012	$(d\sigma/d\Omega)_{max}=0.105 \text{ mb/sr.}$
4082 10	a		$(d\sigma/d\Omega)_{max} = 0.036 \text{ mb/sr.}$
4093 10	а		$(d\sigma/d\Omega)_{max} = 0.036 \text{ mb/sr.}$
4131 10	(0)	0.005	$(d\sigma/d\Omega)_{max} = 0.076 \text{ mb/sr.}$
4163 10	2	0.08	$(d\sigma/d\Omega)_{max} = 0.281 \text{ mb/sr.}$
4189 10	2 ^{<i>c</i>}	0.018 ^C	
4200 10	2 ^{<i>c</i>}	0.018 ^C	
4215 10	a		$(d\sigma/d\Omega)_{max}=0.045 \text{ mb/sr.}$
4226 10	a		$(d\sigma/d\Omega)_{max}=0.121 \text{ mb/sr.}$
4252 10	(2)	0.067	$(d\sigma/d\Omega)_{max}=0.289 \text{ mb/sr.}$
4287 10	a		
4295 10	а		
4314 10	$(0)^{d}$	0.02^{d}	
4336 10	$(0)^{a}$	0.02 ^{<i>d</i>}	
4360 10	e	e	
4374 10	e	e	
4386 10	e	e	
4403 10	e	e	
4425 10	a		
4448 10	f	f	
4476 10	2^{f}	0.19^{f}	
4501 10	J	J	
4522 10	a		$(d\sigma/d\Omega)_{max}=0.130$ mb/sr.
4551 10	а		$(d\sigma/d\Omega)_{max} = 0.038 \text{ mb/sr.}$
4569 10	(2)	0.030	$(d\sigma/d\Omega)_{max} = 0.096 \text{ mb/sr.}$
4589 10	2	0.032	$(d\sigma/d\Omega)_{max}=0.100 \text{ mb/sr.}$
4605 10	u		$(d\sigma/d\Omega)_{max} = 0.039 \text{ mb/sr.}$
4623 10	a		
4635 10	u a		
4650 10	u a		$(d\sigma/d\Omega)_{max} = 0.035 \text{ mb/sr.}$
4665 10	u a		
4694 10	и		
4716 10			
4736 10	2	0.050	O(1 - 1 - 0) = 1/(01 + 1)(0 - 0.715/(10.75D - 00))
4762 10	2	0.958	Other: L=2 and (2J+1)S=0./15 (19/5Ba28). $(d\sigma/d\Omega)_{max}$ =2.69 mb/sr.

⁶¹Ni Levels (continued)

E(level) [†]	L#	$(2J+1)C^2S^{@}$	Comments
4795 10	a		$(d\sigma/d\Omega)_{max} = 0.042$ mb/sr.
4818 10	a		$(d\sigma/d\Omega)_{max} = 0.130 \text{ mb/sr}$
4837 10	a		$(d\sigma/d\Omega)_{\rm max} = 0.045$ mb/sr.
4857 10	(1)	0.015	$(d\sigma/d\Omega)_{max} = 0.080 \text{ mb/sr}$
4872 10	$(0)^{8}$	0.0528	
4883 10	$(0)^{8}$	0.052	
1005 10	\mathbf{h}	0.052	
4910 10	o ^h	0.40	
4954 10	0"	0.40"	
4968 10	2 ¹	0.098 ¹	
4980 10	2 ⁱ	0.098 ¹	
5005 10	а		$(d\sigma/d\Omega)_{max} = 0.080 \text{ mb/sr.}$
5020 10	а		$(d\sigma/d\Omega)_{max} = 0.034 \text{ mb/sr.}$
5034 10	(1)	0.021	$(d\sigma/d\Omega)_{max}=0.115 \text{ mb/sr.}$
5064 10	0	0.163	$(d\sigma/d\Omega)_{max} = (4.51) \text{ mb/sr.}$
5097 10	1	0.054	$(d\sigma/d\Omega)_{max}=0.280$ mb/sr.
5121 10	1	0.108	$(d\sigma/d\Omega)_{max} = 0.590 \text{ mb/sr.}$
5168 10	а		$(d\sigma/d\Omega)_{max} = 0.086 \text{ mb/sr.}$
5187 10	0	0.102	$(d\sigma/d\Omega)_{max}=2.98$ mb/sr.
5216 10	2	0.053	$(d\sigma/d\Omega)_{max}=0.170 \text{ mb/sr.}$
5241 10	a		
5263 10	a		
5280 10	а		$(d\sigma/d\Omega)_{max}=0.157 \text{ mb/sr.}$
5295 10	(1)	0.033	$(d\sigma/d\Omega)_{max}=0.190 \text{ mb/sr.}$
5309 10	0	0.053	$(d\sigma/d\Omega)_{max} = 1.192 \text{ mb/sr.}$
5336 10	а		$(d\sigma/d\Omega)_{max} = 0.025 \text{ mb/sr.}$
5356 10	(1)	0.024	$(d\sigma/d\Omega)_{max}=0.140$ mb/sr.
5366 10	J	J	
5395 10	j	j	
5405 10	j	j	
5440 10	1	0.070	$(d\sigma/d\Omega)_{max} = 0.390 \text{ mb/sr.}$
5466 10	a		$(d\sigma/d\Omega)_{max} = 0.067 \text{ mb/sr.}$
5487 10	a		$\left(d\sigma / d\Omega \right) \max = 0.047 \text{ mb/sr.}$
5512 10	a		$(d\sigma/d\Omega)_{max} = 0.160 \text{ mb/sr.}$
5534 10	2	0.071	$(d\sigma/d\Omega)_{max} = 0.278$ mb/sr.
5574 10	1	0.090	$(d\sigma/d\Omega)_{max} = 0.510 \text{ mb/sr.}$
5601 10	a		$(d\sigma/d\Omega)_{max} = 0.574 \text{ mb/sr.}$
5620 10	2	0.072	$(d\sigma/d\Omega)_{max} = 0.276 \text{ mb/sr.}$
5645 10	(1)	0.052	$(d\sigma/d\Omega)_{max} = 0.284 \text{ mb/sr.}$
5659 10	1	0.049	$(d\sigma/d\Omega)_{max} = 0.30$ mb/sr.
5703 10	2 ^k	0.521 ^k	
5723 10	$\frac{-k}{2}$	0.521^{k}	
5742 10	2	0.325	$(d\sigma/dO)_{max} = 1.318 \text{ mb/sr}$
5796 10	ā	0.525	
5804 10	a		
5821 10	а		$(d\sigma/d\Omega)_{max} = 0.179 \text{ mb/sr.}$
5842 10	а		$(d\sigma/d\Omega)_{max} = 0.099 \text{ mb/sr.}$
5859 10	(0)	0.034	$(d\sigma/d\Omega)_{max} = 0.280 \text{ mb/sr.}$
5883 10	à		$(d\sigma/d\Omega)_{max} = 0.162$ mb/sr.
5894 10	$(2)^{l}$	0.028	
5014 10	(2)	0.020	
5024 10	$(2)^{r}$	0.028°	
5057 10	2^m	0.098^{m}	
5951 10	2	0.098	

⁶¹Ni Levels (continued)

E(level) [†]	L [#]	(2J+1)C ² S [@]	Comments
5987 10	0	0.071	$(d\sigma/d\Omega)_{max} = 1.09 \text{ mb/sr.}$
6016 10	(2)	0.037	$(d\sigma/d\Omega)_{max} = 0.130 \text{ mb/sr.}$
6041 10	a		$(d\sigma/d\Omega)_{max} = 0.192 \text{ mb/sr.}$
6072 10	a		$\left(\frac{d\sigma}{d\Omega} \right)_{max} < 0.035 \text{ m/sr.}$
6085 10	(2)	0.038	$\left(\frac{d\sigma}{ds} \right)_{max} = 0.150 \text{ mb/sr}$
6102 10	2^n	0.030^{n}	
6135 10	$\frac{2}{2^n}$	0.192^{n}	
6148 10	$\frac{2}{a}$	0.172	$(d\sigma/d\Omega) = -0.040 \text{ mb/sr}$
6166 10	a		$(d\sigma/dz)_{max} = 0.040 \text{ mJ/sr.}$
6176 10	a		$(10/1022)_{max} = 0.050$ mb/si.
6194 10	a		
6227 10	a		$(d - d \Omega) = -0.000 \text{ mb/m}$
6227 10	(2)	0.071	$(d\sigma/dz)_{max} = 0.090$ mb/sr.
6249 10	(2)	0.071	$(d\sigma/dz)_{max} = 0.273 \text{ mb/sr.}$
6269 10	(0)	0.015	$(d\sigma/ds_2)_{max} = 0.144 \text{ mb/sr.}$
6289 10	(0)	0.015	$(d\sigma/d\Omega)_{max} = (0.138) \text{ mb/sr.}$
6314 10	u		$(d\sigma/d\Omega)_{max} = 0.185 \text{ mb/sr.}$
6346 10	2	0.115	$(d\sigma/d\Omega)_{max}=0.492 \text{ mb/sr.}$
6371 10	2	0.053	$(d\sigma/d\Omega)_{max}=0.231$ mb/sr.
6391 <i>10</i>	u		$(d\sigma/d\Omega)_{max} = 0.060 \text{ mb/sr.}$
6413 10		0	$(d\sigma/d\Omega)_{max} = (0.120)$ mb/sr.
6427 10	2 0	0.2130	
6444 10	2 <mark>0</mark>	0.2130	
6471 <i>10</i>	a		$(d\sigma/d\Omega)_{max} = 0.173 \text{ mb/sr.}$
6492 10	a		$(d\sigma/d\Omega)_{max} = 0.165 \text{ mb/sr.}$
6515 10	$(1)^{p}$	0.045 ^p	
6538 10	$(1)^{p}$	0.045 ^p	
6556 10	a		$(d\sigma/d\Omega)_{max} = 0.115$ mb/sr.
6571 10	$(2)^{q}$	0.094 <mark>9</mark>	
6589 10	$(2)^{q}$	0.0949	
6609 10	2	0.029	$\left(\frac{d\sigma}{d\Omega}\right)_{max} = 0.140 \text{ mb/sr}$
6630 10	-	0.022	
6661 10	2 <mark>1</mark>	0.091 ^r	
6676 10	$\frac{1}{2^{r}}$	0.091^{r}	
6706 10	-	0.091	
6732 10			
6748 10			
6767 10			
6776 10			
6803 10			
6818 10			
6838 10			
6849 10			
6878 10			
6008 10			
6923 10			
6028 10			
6030 10			
6071 10			
6003 10			
7008 10			
7036 10			
7051 10			
7000 700			
/099~ 50			
7137 ^{x} 50			

⁶¹Ni Levels (continued)

E(level) [†]	E(level) [†]	E(level) [†]	E(level) [†]
7185 ^{&} 50	7374 ^{&} 50	7604 ^{&} 50	7811 ^{&} 50
7206 ^{&} 50	7437 ^{&} 50	7620 ^{&} 50	7826 ^{&} 50
7232 ^{&} 50	7469 ^{&} 50	7698 ^{&} 50	7865 <mark>&</mark> 50
7276 ^{&} 50	7509 ^{&} 50	7722 <mark>&</mark> 50	7897 <mark>&</mark> 50
7312 ^{&} 50	7557 <mark>&</mark> 50	7747 ^{&} 50	7952 ^{&} 50

[†] From 1967Co27.

[‡] From $\sigma(\theta)$ and A_y(q) in (pol d,p) (1973Ay03).

[#] From DWBA analysis of $\sigma(\theta)$ (1967Co27).

[@] From 1967Co27 unless otherwise stated.

[&] From 1964Fu04.

^a Corresponding angular distribution showed a nonstripping pattern.

^b Combined for 3298+3308 levels.

^c Combined for 4189+4200 levels.

^d combined for 4314+4336 levels.

^e L=2, (2J+1)S=0.284, combined for 4360+4374+4386+4403 levels.

^f L=2, (2J+1)S=0.19, combined for 4448+4476+4501 levels.

^g Combined for 4872+4883 levels.

^h Combined for 4916+4954 levels.

^{*i*} Combined for 4968+4980 levels.

^j L=(0), (2J+1)S=0.071, combined for 5366+5395+5405 levels.

^{*k*} Combined for 5703+5723 levels.

¹ Combined for 5894+5914 levels.

^m Combined for 5934+5957 levels.

ⁿ Combined for 6102+6135 levels.

^o Combined for 6427+6444 levels.

^{*p*} Combined for 6515+6538 levels.

^q Combined for 6571+6589 levels.

^{*r*} Combined for 6661+6676 levels.