58 Fe(α ,n γ), 48 Ca(18 O,5n γ) 1977Wa03,1977Wa07,1978Wa09

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Balraj Singh	ENSDF	20-Jan-2020						

Includes reactions: 60 Ni(d,p γ) from 1975Wi28 and 1968Na15; 53 Cr(11 B,2np γ) from 1977Wa07.

1977Wa03: $E\alpha = 6.5-13.0$ MeV. Measured excit, $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin, $\gamma(\theta)$, linear polarization, DSA, semi, Compton suppression, enriched targets (71% and 87%).

1977Wa07: $E\alpha = 6.5-13.0 \text{ MeV}$; ⁵³Cr(¹¹B,2np γ),E=30 MeV. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma(\theta)$, linear polarization, lifetime by DSAM, enriched target.

1975Wi28: $E\alpha=8$ MeV; ⁶⁰Ni(d,p γ),E(d)=6 MeV. Measured $E\gamma$, $I\gamma$, $n\gamma$ -coin, $\gamma\gamma(\theta)$, linear polarization, lifetime by DSAM (also 1974WiZR thesis). For mixing ratios, phase convention is Rose-Brink, thus reversed here to be consistent with Krane-Steffen convention.

1977Wa15: $E\alpha$ =9.0 MeV. Measured lifetime by recoil distance method.

1978Wa09: 48 Ca(18 O,5n),E=25-55 MeV; measured E γ , level lifetimes by Recoil-distance method.

1968Na15: 60 Ni(d,py),E=5.5 MeV.

All data are from 58 Fe(α ,n γ) (1977Wa07, 1977Wa03), except as noted.

⁶¹Ni Levels

E(level) [†]	J ^{π‡}	T _{1/2} #	Comments
0	3/2-		
67.38 21	5/2-		
283.3 <i>3</i>	$1/2^{-}$	24 ^b ps 4	
655.9 <i>3</i>	$1/2^{-}$	17 ^b ps 4	J^{π} : 1/2 ⁻ , (3/2 ⁻) (1977Wa03).
908.3 <i>3</i>	$5/2^{-}$	$0.7^{@}$ ps 4	J^{π} : 5/2 ⁻ (1977Wa03), 5/2 ⁻ (1975Wi28).
1015.0 3	7/2-	4.4 ps 6	$T_{1/2}$: from recoil-distance method (1978Wa09). Other: 6 ps 2 from 1977Wa15. J ^{π} : 7/2 ⁻ (1977Wa03), 7/2 ⁻ (1975Wi28).
1099.6 4	3/2-	0.25 ^{&} ps +47-11	J^{π} : 3/2 ⁻ (1977Wa03).
1132.0 <i>3</i>	$5/2^{-}$	0.29 [@] ps 5	J ^π : 5/2 ⁻ (1977Wa03), 5/2 ⁻ (1975Wi28).
1185.7 4	$3/2^{-}$	0.104 [@] ps <i>17</i>	J^{π} : 3/2 ⁻ (1975Wi28).
1454.5 <i>3</i>	$7/2^{-}$	0.58 [@] ps 25	J ^π : 7/2 ⁻ (1977Wa03), (5/2 ⁻) (1975Wi28).
1609.3 <i>3</i>	$5/2^{-}$	0.26 [@] ps 4	J^{π} : 5/2 ⁻ (1977Wa03), 5/2 ⁻ (1975Wi28).
1729.3 <i>3</i>	$3/2^{-}$	0.065 [@] ps 11	J^{π} : (1/2 ⁻),3/2 ⁻ (1977Wa03), 3/2 ⁻ (1975Wi28).
1807.5 4	9/2-	0.6 [@] ps 5	J^{π} : 9/2 ⁻ (1977Wa03).
1987.6 <i>3</i>	9/2-	0.51 [@] ps <i>18</i>	J^{π} : 9/2 ⁻ (1977Wa03).
1997.5 <i>4</i>	$5/2^{-}$	0.042 [@] ps 11	J^{π} : 5/2 ⁻ (1977Wa03).
2018.0 5	$7/2^{-}$	0.26 [@] ps 16	J^{π} : 7/2 ⁻ (1977Wa03), 7/2 ⁻ (1975Wi28).
2121.4 5	9/2+	0.40 ^{&} ps +74-12	J^{π} : 9/2 ⁺ (1977Wa03), 9/2 ⁺ (1975Wi28).
2124.0 7	$1/2^{-}$	0.044 [@] ps 15	J^{π} : (1/2 ⁻) (1977Wa03), 1/2 ⁻ (1975Wi28).
2128.6 5	$11/2^{-}$	>2 ps	$T_{1/2}$: from 1977Wa03.
			J^{π} : 11/2 ⁻ (1977Wa03).
2409.5 4	9/2-	0.19^{a} ps 4	J^{π} : 9/2 ⁻ (1977Wa07).
3259.1 5	$(11/2^{-})$	0.46^{a} ps 8	$J^{\pi}: (11/2^{-}) (197/Wa07).$
3298.7 8	11/21	0.60° ps +23-14	J^{π} : 11/2' (1977Wa07).
3426.2 4	13/2	$>0.7^{a}$ ps	J^{π} : 13/2 (1977Wa07).
3435.5 6	13/2+	1.0^{4} ps 4	J^{a} : $13/2^{+}$ (197/Wa07).
3611 1 0	$(7/2^{+})$		$I_{1/2}^{-1}$, other, <1.4 ps (1978 wab9). I^{π} , (7/2 ⁺) (1077 W ₂ 07)
3665.4.9	$(9/2^+)$		I^{π} : (9/2 ⁺) (1977Wa07).
4019.2.6	$15/2^+$	$>1.4^{a}$ ps	I^{π} : 15/2 ⁺ (1977Wa07)
4818.6 8	$(17/2^+)$	<1.1 ps	E(level): seen both in ⁵⁸ Fe(α ,n γ) and in ⁵³ Cr(¹¹ B,p2n γ).

Continued on next page (footnotes at end of table)

⁵⁸Fe(α ,n γ),⁴⁸Ca(¹⁸O,5n γ) 1977Wa03,1977Wa07,1978Wa09 (continued)

⁶¹Ni Levels (continued)

E(level)

Comments

 $T_{1/2}$: from DSAM (1978Wa09). E(level): from ⁵³Cr(¹¹B,p2n γ). 5316.2 12

[†] From least-squares fit to $E\gamma$ data.

[‡] From Adopted Levels. Supporting assignments from this data set based on $\gamma(\theta)$ and linear polarization data of 1977Wa03, 1977Wa07, and 1975Wi28 are given in comments.

[#] From DSA measurements, except as noted. 15% uncertainty due to stopping powers included.

[@] Unweighted average of 1975Wi28 and 1977Wa03.

[&] From 1975Wi28.

^a From 1977Wa07.
 ^b Recoil-distance Doppler-shift method (1977Wa15).

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ#	Comments
67.38	$5/2^{-}$	67.4.5	100	0	$3/2^{-}$			
283.3	$1/2^{-}$	283.4.5	100	Õ	$3/2^{-}$			
655.9	$1/2^{-}$	372.5.5	17 /	283.3	$1/2^{-}$			$A_2 = -0.01$ <i>l</i> : $A_4 = 0.00$ <i>l</i> : pol = +0.04 6
	-, -	588.4.5	8 /	67.38	$5/2^{-}$			$A_2 = -0.04$ 3: $A_4 = 0.00$ 1: pol = +0.04 6
		656.0.5	75 1	0	$3/2^{-}$			$A_2 = -0.01$ <i>I</i> : $A_4 = 0.00$ <i>I</i> : pol=0.00 2
908.3	$5/2^{-}$	625.0 7	61	283.3	$1/2^{-}$	E2		$A_2 = +0.21$ 3: $A_4 = -0.02$ 3
	-1-	841.0 5	21 <i>I</i>	67.38	5/2-	M1+E2	+1.83 20	$A_2 = +0.15 I$; $A_4 = +0.02 2$; pol= $-0.17 6$ $\delta = +0.36$ to $+1.19$ (1975Wi28).
		908.3 5	73 2	0	3/2-	M1+E2	-0.18 5	A ₂ = -0.28 <i>I</i> ; A ₄ = -0.02 <i>I</i> ; pol= -0.15 <i>3</i> $\delta = -0.20$ + $3-16$ (1975Wi28).
1015.0	7/2-	947.84 ^{&} 15	75 1	67.38	5/2-	M1+E2	+2.46 15	$A_2 = +0.47 \ I$; $A_4 = +0.13 \ I$; pol=-0.10 3 δ : =+2.5 5 (1975Wi28).
		1015.1 ^{&} 2	25 1	0	3/2-	E2		$A_2 = +0.27 \ I; A_4 = -0.09 \ I; \text{pol} = +0.45 \ 6 \\ \delta(\text{M3/E2}) = +0.03 \ +22 - 12 \ (1975\text{Wi28}).$
1099.6	$3/2^{-}$	816.7 7	51 <i>1</i>	283.3	$1/2^{-}$	M1+E2	+0.23 7	$A_2 = -0.01 I$; $A_4 = 0.00 I$; pol = -0.12 7
	,	1032.1 5	71	67.38	$5/2^{-}$			$A_2 = -0.434; A_4 = +0.035$
		1099.4 5	42 1	0	$3/2^{-}$			pol=+0.14 7
1132.0	5/2-	1064.6 5	37 1	67.38	5/2-	M1+E2	+0.14 12	$A_2 = +0.21 I; A_4 = 0.00 I; \text{pol} = +0.16 8$ $\delta > +0.84 (1975 \text{Wi28}).$
		1131.9 5	63 1	0	3/2-	M1+E2	-0.47 9	$A_2 = -0.44; A_4 = +0.01 I; \text{ pol} = -0.03 4$ $\delta = -0.36 \text{ to } -0.70 \text{ or } < -2.1 (1975\text{Wi28}).$
1185.7	$3/2^{-}$	529.8.5	8.3	655.9	$1/2^{-}$			$L_{\rm sc}$: other: 12.3 (1975Wi28).
	-,-	902	<4	283.3	$1/2^{-}$			I_{a} : other: 5.2 (1975Wi28).
		1119	<2	67.38	$5/2^{-}$			I_{ν} : other: 6.2 (1975Wi28).
		1185.5 7	92 <i>3</i>	0	$3/2^{-}$			I_{ν} : other: 77 8 (1975Wi28).
					- /			$\delta > -0.27$ (1975Wi28).
1454.5	7/2-	1387.2 5	25 3	67.38	5/2-	M1+E2	+2.7 4	$A_2 = +0.44$ 2; $A_4 = +0.15$ 3; pol=-0.05 17 $\delta = +0.36$ to +2.75 (1975Wi28).
		1454.4 5	75 3	0	3/2-	E2		$A_2=+0.25 6; A_4=-0.15 1; pol=+0.50 6$ $\delta: \pm 0.72 \pm 29 = 23 (1975Wi28)$
1609 3	$5/2^{-}$	477 4 5	41	1132.0	$5/2^{-}$			$\Delta_2 = \pm 0.25$ 7: $\Delta_4 = -0.10.8$
1007.5	5/2	701.1.7	51	908.3	5/2-			$A_2 = +0.257, A_4 = -0.100$
		1541 7 5	54 2	67.38	5/2-	$M1\pm F2$	-0.07.5	$\Delta_{2} = +0.16$ 1: $\Delta_{4} = -0.00$ 2: nol=+0.35 10
		1571.75	57 2	07.30	5/2	14117152	0.07 5	$\delta = -0.18 \text{ to } +0.18 (1975\text{Wi}28)$
		1609.4 5	37 1	0	3/2-	M1+E2	-0.33 14	$A_2 = -0.40 \ I; A_4 = +0.01 \ 2; \text{ pol} = -0.05 \ I0$ $\delta = -0.18 \text{ to } -2.75 \ (1975 \text{Wi28}).$

 $\gamma(^{61}\text{Ni})$

Continued on next page (footnotes at end of table)

 ${}^{61}_{28}\mathrm{Ni}_{33}$ -3

		⁵⁸ F	$e(\alpha, \mathbf{n}\gamma), ^{48}$	Ca(¹⁸ O,5n	iγ) 1	977Wa03,197	77Wa07,1978W	(continued)
γ ⁽⁶¹ Ni) (continued)								
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	δ#	Comments
1729.3	3/2-	820.7 7	3@	908.3	5/2-			$I\gamma(821)/I\gamma(1662)=0.079$ disagrees with 0.41 3 in Adopted dataset where value is taken from (n,γ) and ε decay. It is possible that the low intensity in (α,nγ) is due to angular distribution effects.
		1073.2 5	21 5	655.9	1/2-			pol= $-0.3 I$ I _{γ} : from 1975Wi28. Other: 22 at 90° (1977Wa03)
		1446.2 5	16 5	283.3	1/2-			pol=-0.1 I I_{γ} : from 1975Wi28. Other: 21 at 90° (1977Wa03)
		1661.9 5	38 6	67.38	5/2-			$A_2 = -0.01 I; A_4 = +0.06 2; \text{ pol} = -0.2 2$ I_{γ} : from 1975Wi28. Other: 29 at 90° (1977Wa03).
		1729.3 5	25 5	0	3/2-			pol= $-0.3 2$ I _y : from 1975Wi28. Other: 25 at 90° (1977Wa03).
1807.5	9/2-	792.6 <i>5</i> 1740.1 <i>5</i>	11 2 89 2	1015.0 67.38	7/2 ⁻ 5/2 ⁻	M1+E2 E2	+0.97 18	A ₂ =+0.57 2; A ₄ =+0.06 2; pol=-0.62 12 A ₂ =+0.36 1; A ₄ =-0.10 1; pol=+0.53 5 δ (M3/E2)=+0.01 3.
1987.6	9/2-	533.2 5 972.5 5 1079.3 7	13 <i>I</i> 12 2 18 2	1454.5 1015.0 908.3	7/2 ⁻ 7/2 ⁻ 5/2 ⁻	M1(+E2) M1+E2 E2	+0.02 <i>3</i> -0.70 <i>23</i>	$A_2 = -0.18 \ I; A_4 = -0.03 \ 2; \text{ pol} = -0.39 \ 7$ $A_2 = -079 \ 2; A_4 = +0.06 \ 3; \text{ pol} = +0.03 \ I2$ $A_2 = +0.35 \ 2; A_4 = -0.11 \ 2; \text{ pol} = +0.38 \ I1$
		1920.1 5	57 3	67.38	5/2-	E2		$A_2 = +0.36 \ l; A_4 = -0.10 \ l; \text{ pol} = +0.39 \ l0 \\ \delta(\text{M3/E2}) = +0.02 \ 3.$
1997.5	5/2-	982.3 5 1089.4 5 1930.0 7	11 <i>1</i> 16 <i>1</i> 5 <i>1</i>	1015.0 908.3 67.38	7/2 ⁻ 5/2 ⁻ 5/2 ⁻		0.07.0	$A_2 = -0.40 \ 6; \ A_4 = +0.19 \ 7$ $A_2 = +0.34 \ 4; \ A_4 = -0.14 \ 4$
2018.0	7/2-	1997.3 7 1109.8 <i>10</i> 1950.6 <i>5</i>	10 [@] 90 [@]	908.3 67.38	3/2 5/2 ⁻ 5/2 ⁻	M1+E2 M1(+E2)	-0.27 6	$A_2 = -0.43 I$; $A_4 = +0.02$; pol = -0.24 II $A_2 = -0.26 2$; $A_4 = -0.03 2$; pol = -0.4 I
2121.4	9/2+	1106.5 ^{&} 2	100	1015.0	7/2-	E1		δ: other: +0.03 16 (1975Wi28). $ A_2=-0.28 I; A_4=+0.03 I; pol=+0.23 6 $ $ δ(M2/E1)=0.00 3. Other: +0.03 28 $
2124.0	1/2-	2124.0 7	100	0	3/2-			(1975Wi28). $A_2=0.00 2; A_4=+03 2; pol=0.0 1$
2128.6	11/2-	1114.0 ^{&} 2	100	1015.0	7/2-	E2		$A_2 = +0.32 \ l; A_4 = -0.11 \ l; \text{ pol} = +0.44 \ 4 \ \delta(M3/E2) = -0.02 \ 2.$
2409.5	9/2-	955.0 <i>5</i> 1277.5 <i>5</i>	17 2 12 2	1454.5 1132.0	7/2 ⁻ 5/2 ⁻	M1+E2 E2	-0.10 5	A ₂ = -0.30 3; A ₄ = $+0.02$ 4; pol= -0.21 16 A ₂ = $+0.24$ 4; A ₄ = -0.08 6; pol= $+0.5$ 4 δ (M3/E2)= -0.04 9.
		1394.6 5	92	1015.0	7/2-	M1+E2		A ₂ =-1.0 3; A ₄ =+0.1 2; pol=0.0 2 δ : -2.1 $\leq \delta \leq -0.3$.
		2342.0 7	62 <i>3</i>	67.38	5/2-	E2		$A_2 = +0.33$ 2; $A_4 = -0.10$ 2; pol=+0.90 21 $\delta(E2/M3) = +0.02$ 4.
3259.1	(11/2 ⁻)	1271.6 5		1987.6	9/2-	M1+E2		$A_2 = -0.61 \ 4$; $A_4 = +0.03 \ 5$; pol=0.0 3 δ : $-2.7 \le \delta \le -0.27$.
3298.7 3426.2	11/2 ⁺ 13/2 ⁻	1451.5 7 1177.3 5 1297.5 5	100 10 <i>1</i>	1807.5 2121.4 2128.6	9/2 ⁻ 9/2 ⁺ 11/2 ⁻	M1+E2 M1+E2	+0.63 8 -2.6 4	$A_2 = +0.44 \ I; A_4 = +0.07 \ I; \text{ pol} = -0.66 \ 7$ $A_2 = -0.72 \ 5; A_4 = +0.45 \ 7; \text{ pol} = +0.08 \ 25$
		1438.43 [~] 14 1618.9 5	21 <i>2</i>	1987.6	9/2 9/2 ⁻	E2 E2		$A_2=+0.28 I; A_4=0.13 I; pol=+0.51 8$ $\delta(M3/E2)=-0.06 4.$ $A_2=+0.29 2; A_4=-0.11 3; pol=+0.66 27$ $\delta(M3/E2)=-0.04 3.$

Continued on next page (footnotes at end of table)

		⁵⁸ F	$e(\alpha, \mathbf{n}\gamma),^{48}$	$Ca(^{18}O, 5n\gamma)$	1977Wa03	,1977Wa07,1	1978Wa09 (continued)	
γ ⁽⁶¹ Ni) (continued)								
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f J_f^{\pi}$	Mult. [‡]	δ#	Comments	
3435.5	13/2+	1314.0 ^{&} 2	100	2121.4 9/2+	E2		$A_2 = +0.28 \ I; A_4 = -0.11 \ I; \text{ pol} = +0.58 \ 8 \\ \delta(\text{M3/E2}) = -0.05 \ 4.$	
3644.4	$(7/2^+)$	1523.0 7	100	2121.4 9/2+				
3665.4	$(9/2^+)$	1544.0 7	100	2121.4 9/2+				
4019.2	$15/2^{+}$	584.0 ^{&} 2	28 <i>3</i>	3435.5 13/2+	M1+E2	+0.63 10	A ₂ =+0.56 3; A ₄ =+0.10 4; pol=-0.50 23	
		593.00 ^{&} 13	72 3	3426.2 13/2-	E1		$A_2 = -0.33 \ I; A_4 = +0.02 \ 2; \text{ pol} = +0.56 \ II \\ \delta(M2/E1) = -0.04 \ 3.$	
4818.6	$(17/2^+)$	799.4 5	100	4019.2 15/2+			$A_2 = -0.52 8; A_4 = +0.03 10$	
5316.2		1297 <i>1</i>	100	4019.2 15/2+				

[†] From $(\alpha,n\gamma)$ (1977Wa03,1977Wa07), unless otherwise indicated. [‡] From $\gamma(\theta)$ and linear polarization data of 1975Wi28, 1977Wa03, and 1977Wa07. [#] With Gaussian distribution of the population of magnetic substates (1977Wa03,1977Wa07).

^(a) Measured at 90°. ^(b) From 1978Wa09, 1977Wa03, and 1977Wa07.

 $^{61}_{28}\rm{Ni}_{33}$

5

Legend

58 Fe(α ,n γ), 48 Ca(18 O,5n γ) 1977Wa03,1977Wa07,1978Wa09

Level Scheme (continued)

Intensities: % photon branching from each level

6

$\frac{{}^{58}\text{Fe}(\alpha,\textbf{n}\gamma),{}^{48}\text{Ca}({}^{18}\text{O},\textbf{5n}\gamma) \qquad \textbf{1977Wa03}, \textbf{1977Wa07}, \textbf{1978Wa09}}{\text{Legend}} \qquad \text{Legend}$

Level Scheme (continued)

⁶¹₂₈Ni₃₃

7