Adopted Levels, Gammas

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh	ENSDF	25-Mar-2019					

 $Q(\beta^{-})=7178 \ 3; \ S(n)=6846 \ 3; \ S(p)=12122.6 \ 26; \ Q(\alpha)=-994\times10^{1} \ 23 \ 2017Wa10$

S(p) deduced by evaluator from mass excess for ⁶¹Mn from 2017Wa10, and that for ⁶¹Cr from 2018Mo14 measurement. $Q(\beta^{-}n)=1600 4$, S(2n)=12359 3, S(2p)=28490 160 (2017Wa10).

1985Ru05: first identification of ⁶¹Mn from fragmentation of ⁸²Se beam at 11.5 MeV/nucleon on tungsten target using on-line mass separator at GSI facility.

1999Ha05: 1-GeV proton-induced spallation of uranium UC₂ target at ISOLDE-CERN facility. The laser ionized Mn isotopes were extracted from the ion source and mass separated. Using tape systems measured β -delayed neutron multiscaling, E γ and $\gamma\gamma$ coincidence. β -delayed neutron collected by multiscaling measurements using Mainz 4 π He neutron counter.

Mass measurements: 2012Na15 (also 2012He13), 1994Se12, 1990Tu01.

Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for ten references for structure calculations. Additional information 1.

⁶¹Mn Levels

Cross Reference (XREF) Flags

- A 61 Cr β^- decay (234 ms)
- B Coulomb excitation
- C 238 U(64 Ni,X γ)
- **D** 238 U(70 Zn,X γ)

E(level) [†]	J^{π}	T _{1/2}	XREF		Comments
0.0 [@]	5/2 ^{(-)#}	0.709 s 8	ABCD	$\%\beta^{-}=100; \%\beta^{-}n \le 0.2 \ (2013 \text{Ra}17)$	

- μ =+3.535 2 (2016Ba44)
- Q=+0.36 3 (2016Ba44)
- Other $\%\beta$ -n=0.6 *1* from 2000HaZL is not adopted, as values for other Mn isotopes in this work are in disagreement with published data.
- Theoretical $T_{1/2}=224$ ms, $\%\beta^{-}n=0.02$ (2003Mo09).

Theoretical $T_{1/2}=5.7$ s, $\%\beta^{-}n=0.4$ (2016Ma12).

- J^{π} : spin from analysis of hyperfine structure spectrum in 2015Ba49, using collinear laser spectroscopy. Spin of 7/2 gave unrealistically large and negative static quadrupole moment of -5.6 8. Parity from probable allowed β feeding of (3/2⁻) g.s. in ⁶¹Fe from ⁶¹Mn decay. Large-scale shell-model calculations, and systematics of ground states of odd-A Mn nuclei suggest 5/2⁻.
- μ ,Q: from collinear laser spectroscopy technique at ISOLDE-CERN (2016Ba44) The moments were measured with reference to μ =+3.46871790 *9* (1974Lu08) and Q=+0.33 *1* (1979De19) for ⁵⁵Mn. Earlier value: μ =+3.534 *1* (2015Ba49 and 2015He10, from the same group as 2016Ba44). See also 2017Ne04 review article from the same group.
- $\delta < r^2 > (5^5 \text{Mn}, 6^1 \text{Mn}) = +0.504 \text{ fm}^2$ 15(stat) 53(syst) for atomic transitions; +0.504 fm² 5(stat) 54(syst) for ionic transitions (2016He14, from hyperfine structures using collinear laser spectroscopy at ISOLDE-CERN).
- Isotope shift: $\delta < v > (^{55}Mn, ^{61}Mn) = 1843$ MHz 7(stat) 25(syst) for atomic transitions; 1215 MHz 2(stat) 27(syst) for ionic transitions (2016He14, from hyperfine structures using collinear laser spectroscopy at ISOLDE-CERN).
- J^{π} : large-scale shell-model predictions and systematics of ground states of odd-A Mn nuclei. Probable allowed β feeding of (3/2⁻) g.s. in ⁶¹Fe from ⁶¹Mn decay supports this assignment, and also suggests the same parity for the ground states of ⁶¹Mn and ⁶¹Fe.
- T_{1/2}: weighted average of 0.708 s 8 (2013Ra17, decay curves for several γ rays) and

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁶¹Mn Levels (continued)

E(level) [†]	J^{π}	XREF	Comments			
			0.71 s <i>I</i> (1985Ru05, from γ timing). Other: 623 ms <i>I0</i> (1999Ha05, method not given, possibly β -fragment correlations). Low and discrepant value from 1999Ha05 is probably due to mixture of some impurities. Values obtained from γ -ray measurements, being more specific, are preferred here.			
157.1 [@] 2	$(7/2^{-})^{\#}$	ABCD	$T_{1/2}$: <1.7 ns (minimum flight time between the secondary target and the particle detector (2009Va16).			
1034.6 [@] 3	$(9/2^{-})^{\#}$	BCD				
1142.3 4	(1/2 ⁻ ,3/2)	A	J ^{π} : γ to 5/2 ⁽⁻⁾ ; probably low spin, as the level is not populated in heavy-ion in-beam studies.			
1281.8 [@] 3	$(11/2^{-})^{\#}$	BCD	J^{π} : $\Delta J=(2)$, (Q) γ to (7/2 ⁻).			
1497.2 4	(3/2,5/2,7/2)	Α	J^{π} : log ft=4.9 from (5/2 ⁻) parent value.			
1860.8 4	$(3/2, 5/2, 7/2)^{\ddagger}$	Α				
2031.8? 7		Α				
2201.9? 4		С				
2378.2 4	$(3/2,5/2,7/2)^{\ddagger}$	Α				
2502.2 [@] 4	$(15/2^{-})$	С	J^{π} : $\Delta J=(2)$, (Q) γ to (11/2 ⁻).			
2607.5? 5		С				
2753.1 [@] 5		С				
3131.6 [@] 6		С				
3572.4 [@] 7		С				

[†] From least-square fit to $E\gamma$ data.

[‡] γ to $5/2^{(-)}$ suggests $1/2^-$ to $9/2^-$; 1/2 or 9/2 less likely from apparent β feeding from $(5/2^-)$ parent state. Parity would be negative if the β transition is allowed, as suggested by apparent log *ft* value.

[#] Systematics of J^{π} of ground states of odd Mn nuclei and shell-model calculations (2009Cr02,2008Va08). See also shell-model calculations by 2013Ji04, level spectrum shown in figure 3.

[@] Seq.(A): γ cascade based on (5/2⁻).

$\gamma(^{61}Mn)$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	α #	Comments
157.1	(7/2-)	157.1 2	100	0.0 5/2 ⁽⁻⁾	(M1+E2)	0.044 35	B(E2)(W.u.)=30 4 (2009Va16) E _{\gamma} : unweighted average of 157.2 5 (β^- data), 157.3 2 ((64 Ni,X _Y) data), 156.7 1 ((70 Zn,X _Y) data). Weighted average is 156.8 2 but with reduced χ^2 =3.9. α : value overlaps M1 and E2. B(E2)(W.u.) is obtained by 2009Va16 with constrained B(M1)=0.008 based on T _{1/2} (157 level)<1.7 ns (minimum flight time between the secondary target and the particle detector) since mixing ratio of the 157-keV transition could not be obtained from their $\gamma(\theta)$ data.
1034.6	(9/2 ⁻)	877.6 <i>3</i>	100	157.1 (7/2 ⁻)	[M1(+E2)]		B(E2)(W.u.)=0 (2009Va16)
		(1035)		0.0 5/2 ⁽⁻⁾	[E2]		$B(E2)(W.u.) = 7.5 \ 15 \ (2009Va16)$ B(E2)(W.u.) from Coulomb excitation.
1142.3	$(1/2^-, 3/2)$	1142.2 4	100	0.0 5/2 ⁽⁻⁾			

Adopted Levels, Gammas (continued)

E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult.‡	Comments
1281.8	$(11/2^{-})$	247.2 2	20 8	1034.6	(9/2 ⁻)		
		1124.6 2	100 20	157.1	$(7/2^{-})$	(Q)	
1497.2	(3/2,5/2,7/2)	354.8 4	100 13	1142.3	$(1/2^{-}, 3/2)$		
		1497.3 5	56 13	0.0	$5/2^{(-)}$		
1860.8	(3/2,5/2,7/2)	1860.8 4	100	0.0	$5/2^{(-)}$		
2031.8?		534.6 [@] 5	100	1497.2	(3/2,5/2,7/2)		
2201.9?		920.1 [@] 2	100	1281.8	$(11/2^{-})$		
2378.2	(3/2, 5/2, 7/2)	2378.2 4	100	0.0	$5/2^{(-)}$		
2502.2	$(15/2^{-})$	1220.4 2	100	1281.8	$(11/2^{-})$	(Q)	
2607.5?		405.6 [@] 3	100 50	2201.9?			
		1325.7 [@] 10	100 50	1281.8	$(11/2^{-})$		
2753.1		250.9 <i>3</i>	100	2502.2	$(15/2^{-})$	(D)	Mult.: $\Delta J=(0)$.
3131.6		378.5 <i>3</i>	100	2753.1			
3572.4		440.8 <i>3</i>	100	3131.6			

$\gamma(^{61}Mn)$ (continued)

[†] Weighted averages from all available data, unless noted otherwise. [‡] Tentative assignment from $\gamma\gamma(\theta)$ data in ²³⁸U(⁶⁴Ni,X γ).

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Placement of transition in the level scheme is uncertain.

⁶¹₂₅Mn₃₆

Adopted Levels, Gammas

 $^{61}_{25}Mn_{36}$