24 Mg(40 Ca,p2n γ) 2005An03

Type Author Citation Literature Cutoff Date
Full Evaluation Kazimierz Zuber, Balraj Singh NDS 125, 1 (2015) 25-Jan-2015

2005An03 (also 2005Ru06,2005Ek01): E=104 MeV. Measured Eγ, Iγ, γγ, (recoil)γγ coin with the CLARION detector array, composed of ten Clover detectors and recoil spectrometer. The relative cross sections of the three A=61 isotopes ⁶¹Cu, ⁶¹Zn, and ⁶¹Ga were estimated from the known or presumed ground state transitions to be 420:110:1, respectively. Comparison with structure of mirror nuclide ⁶¹Zn and shell-model calculations.

Level scheme is proposed by 2005An03 based on mirror symmetry arguments with the ⁶¹Zn nuclide, in particular 1532-1141-124 cascade in ⁶¹Zn.

⁶¹Ga Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0	3/2-	J^{π} : from Adopted Levels.
	$(1/2^{-})$	
271 # <i>1</i>	5/2-	
1397 [#] <i>1</i>		
2903? [#] 2	$(13/2^{-})$	

[†] From Eγ data.

γ (61Ga)

 R_{154-90} =Y(154°)/Y(90°), where Y(θ) represents the γ -ray yield at one of the detector rings of CLARION. Ratios for known stretched ΔJ =2 reference transitions is expected as 1.6-1.7, while stretched ΔJ =1 transitions have $R_{154-90}\approx 0.7$ -0.8.

E_{γ}^{\dagger}	I_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	${\rm J}_f^\pi$	Mult.	Comments
220 [‡] <i>1</i>	15 7	220?	(1/2-)	0.0	3/2-		E_{γ} : possible counterpart of 89-keV 1/2 ⁻ to 3/2 ⁻ transition in 61 Zn.
271 <i>I</i>	100 10	271	5/2-	0.0	$3/2^{-}$	D+Q	Mult.: $\Delta J=1$, D+Q from $R_{154^{\circ}-90^{\circ}}=1.15$ 16.
1126 <i>I</i>	64 16	1397	$(9/2^{-})$	271	5/2-		
x1231 1	22 12						
1506 [‡] 1	39 14	2903?	$(13/2^{-})$	1397	$(9/2^{-})$		

[†] The placement and order of the 1506-1126-271 cascade has been inferred from mirror symmetry arguments with ⁶¹Zn nuclide.

[‡] As assigned by 2005An03 based on mirror symmetry arguments with ⁶¹Zn nuclide.

[#] Band(A): γ -cascade based on $5/2^-$.

[‡] Placement of transition in the level scheme is uncertain.

 $^{^{}x}$ γ ray not placed in level scheme.

24 Mg(40 Ca,p2n γ) 2005An03

Band(A): γ-cascade based on 5/2⁻

