24 Mg(40 Ca,p2n γ) 2005An03 Type Author Citation Literature Cutoff Date Full Evaluation Kazimierz Zuber, Balraj Singh NDS 125, 1 (2015) 25-Jan-2015 2005An03 (also 2005Ru06,2005Ek01): E=104 MeV. Measured Eγ, Iγ, γγ, (recoil)γγ coin with the CLARION detector array, composed of ten Clover detectors and recoil spectrometer. The relative cross sections of the three A=61 isotopes ⁶¹Cu, ⁶¹Zn, and ⁶¹Ga were estimated from the known or presumed ground state transitions to be 420:110:1, respectively. Comparison with structure of mirror nuclide ⁶¹Zn and shell-model calculations. Level scheme is proposed by 2005An03 based on mirror symmetry arguments with the ⁶¹Zn nuclide, in particular 1532-1141-124 cascade in ⁶¹Zn. #### ⁶¹Ga Levels | E(level) [†] | $J^{\pi \ddagger}$ | Comments | |----------------------------|--------------------|----------------------------------| | 0.0 | 3/2- | J^{π} : from Adopted Levels. | | | $(1/2^{-})$ | | | 271 # <i>1</i> | 5/2- | | | 1397 [#] <i>1</i> | | | | 2903? [#] 2 | $(13/2^{-})$ | | [†] From Eγ data. ## γ (61Ga) R_{154-90} =Y(154°)/Y(90°), where Y(θ) represents the γ -ray yield at one of the detector rings of CLARION. Ratios for known stretched ΔJ =2 reference transitions is expected as 1.6-1.7, while stretched ΔJ =1 transitions have $R_{154-90}\approx 0.7$ -0.8. | E_{γ}^{\dagger} | I_{γ} | $E_i(level)$ | \mathbf{J}_i^{π} | \mathbf{E}_f | ${\rm J}_f^\pi$ | Mult. | Comments | |---------------------------|--------------|--------------|----------------------|----------------|-----------------|-------|--| | 220 [‡] <i>1</i> | 15 7 | 220? | (1/2-) | 0.0 | 3/2- | | E_{γ} : possible counterpart of 89-keV 1/2 ⁻ to 3/2 ⁻ transition in 61 Zn. | | 271 <i>I</i> | 100 10 | 271 | 5/2- | 0.0 | $3/2^{-}$ | D+Q | Mult.: $\Delta J=1$, D+Q from $R_{154^{\circ}-90^{\circ}}=1.15$ 16. | | 1126 <i>I</i> | 64 16 | 1397 | $(9/2^{-})$ | 271 | 5/2- | | | | x1231 1 | 22 12 | | | | | | | | 1506 [‡] 1 | 39 14 | 2903? | $(13/2^{-})$ | 1397 | $(9/2^{-})$ | | | [†] The placement and order of the 1506-1126-271 cascade has been inferred from mirror symmetry arguments with ⁶¹Zn nuclide. [‡] As assigned by 2005An03 based on mirror symmetry arguments with ⁶¹Zn nuclide. [#] Band(A): γ -cascade based on $5/2^-$. [‡] Placement of transition in the level scheme is uncertain. $^{^{}x}$ γ ray not placed in level scheme. #### # 24 Mg(40 Ca,p2n γ) 2005An03 Band(A): γ-cascade based on 5/2⁻