⁹Be(⁶⁴Ni,Xγ) 2007Ve05,2004Ma80

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Kazimierz Zuber, Balraj Singh	NDS 125, 1 (2015)	25-Jan-2015						

2007Ve05: ⁶¹Fe isomer populated and aligned following the fragmentation of a 64.6 MeV/nucleon ⁶⁴Ni beam from GANIL accelerator impinging on a 94.1 mg/cm² ⁹Be target. Fully stripped fragments selected by the LISE fragment separator and implanted in a CD single crystal. Measured spectroscopic quadrupole moment of the $9/2^+$ isomer by ion-implantation TDPAD method and four Ge detectors at angles of -24° , -114° , 145° and 66° relative to the secondary beam.

2004Ma80: E=54.7 MeV/nucleon ⁶⁴Ni beam from GANIL accelerator. Fragmentation process used to produce ⁶¹Fe nuclei which were separated using the LISE fragment separator and implanted in a Cu host. Measured half-life and g factor of the 9/2⁺ isomer by time-dependent perturbed angular distribution TDPAD method and four Ge detectors at angles -45°, -135°, 45°, 135° relative to the secondary beam.

1998Gr14: E=60.3 MeV/nucleon beam of ⁸⁶Kr from GANIL accelerator using SISSI production target device coupled to the system of the Alpha and LISE3 spectrometers. ⁸⁶Kr with intensity of 15 pnA impinged on a rotating natural Ni target 100 μ m thick. Measured E γ , I γ and half-life using standard TOF technique.

2015Wi02: measured half-life of the 861, $9/2^+$ isomer using a new technique of identifying nanosecond isomers produced in secondary reactions with intermediate beam-energy radioactive ions beams at NSCL-MSU facility using S-800 spectrograph for reaction products, GRETINA array for prompt γ rays and CsI(Na) array for delayed transitions. Measured ⁶¹Fe ions) γ (t).

Additional information 1.

⁶¹Fe Levels

Count-rate ratio $R(\theta)$ functions of the 654 keV and 207 keV γ -rays exhibit an opposite phase. This is due to the different multipolarities for the two transitions. The ratio between amplitudes of the two $R(\theta)$ functions is -1.43 *16*, using GEANT simulations assuming that the 654 keV and 207 keV transition have pure M2 and M1 multipolarities estimated this ratio to be -1.30 *6*. The good agreement between the two ratio indicates level sequence in ⁶¹Fe is indeed 3/2–(g.s.), 5/2⁻ and 9/2⁺ (2004Ma80).

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments	
0	$3/2^{-}$			
207 861	5/2 9/2+	238 ns 5	$\mu = -1.03$ 2 from measured g factor = -0.229 2 (2004Ma80).	
001	> / =	200 115 0	Q=0.41 6 (2007Ve05), derived relative to the quadrupole moment of the 57 Fe (3/2 ⁻ ,98 ns) isomer, Q(9/2 ⁺ isomer in 61 Fe)/Q(3/2 ⁻ isomer in 57 Fe)=2.75 13 and Q(98-ns, 3/2 ⁻ in 57 Fe)=+0.15 2.	
			With this value, obtain $Q(^{61}Fe, 9/2^+)=0.41$ 6. The sign of Q is not determined.	
			$T_{1/2}$: weighted average of 239 ns 5 from $\gamma\gamma(t)$ (2004Ma80,2002MaZN); and 237 ns 6 from	
			$(^{01}\text{Fe})\gamma(t)$ (2015Wi02). Other: 250 NS 10 (1998Gr14).	

[†] From 2004Ma80.

Eγ	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [†]
207	207	$5/2^{-}$	0	$3/2^{-}$	(M1)
654	861	9/2+	207	5/2-	(M2)

[†] From 2004Ma80.

⁹Be(⁶⁴Ni,Xγ) 2007Ve05,2004Ma80

Level Scheme

 $^{61}_{26}{
m Fe}_{35}$