⁶¹Zn ε decay (89.1 s) 1970Ho29,1972Du09

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Kazimierz Zuber, Balraj Singh	NDS 125, 1 (2015)	25-Jan-2015

Parent: ⁶¹Zn: E=0; J^{π}=3/2⁻; T_{1/2}=89.1 s 2; Q(ε)=5635 16; % ε +% β ⁺ decay=100.0

⁶¹Zn-J^{π},T_{1/2}: From Adopted Levels for ⁶¹Zn.

⁶¹Zn-Q(ε): From 2012Wa38.

Source produced by ${}^{58}Ni(\alpha,n)$ (1970Ho29,1969Ho02).

1970Ho29: measured E γ , I γ , γ (t) with Compton suppression spectrometer.

1972Du09: measured E γ , I γ , $\gamma(t)$ with Ge(Li). Mass separated source.

Others: 1955Li39, 1959Cu86, 1969Ho02, 1974YoZT.

The decay scheme is based on $\gamma\gamma$ coin data from 1969Ho02 and on energy sums.

Data are from 1970Ho29, except as noted. There is good agreement between the results of 1970Ho29 and 1972Du09.

From RADLIST code, deduced total decay energy is 5638 keV 70 agrees with 5640 keV 16 from $Q(\varepsilon)$ value.

⁶¹Cu Levels

E(level) [†]	J ^π ‡	E(level) [†]	Jπ‡	E(level) [†]	Jπ‡	E(level) [†]	$J^{\pi \ddagger}$
0.0	$3/2^{-}$	1660.44 7	3/2-	2358.13 11	3/2-	2857.1 3	1/2-,3/2-
474.98 7	$1/2^{-}$	1732.4 12	$7/2^{-}$	2472.50 13	3/2-	2932.91 16	3/2-
970.10 11	$5/2^{-}$	1904.5 <i>3</i>	$5/2^{-}$	2683.96 20	$3/2^{-}$	3019.3 11	3/2-
1310.94 10	7/2-	1932.60 8	3/2-	2792.98 13	5/2-	3092.4 13	3/2-
1394.52 8	$5/2^{-}$	2088.86 9	$(1/2)^{-}$	2840.53 14	$1/2^{-}, 3/2^{-}$	3521.2 15	1/2-,3/2-,5/2-

[†] From least-squares fit to $E\gamma$ data.

[‡] From Adopted Levels.

ε, β^+ radiations

Measured endpoint energy of β^+ radiation is 4380 200. This β^+ endpoint must correspond to g.s. feeding from intensity arguments (1959Cu86).

E(decay)	E(level)	Iβ ⁺ ‡#	$\mathrm{I}\varepsilon^{\ddagger\#}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \#}$	Comments
(2114 16)	3521.2	0.09 3	0.047 14	5.5 2	0.14 4	av E β =469.9 71; ε K=0.300 10; ε L=0.0329 11; ε M+=0.00574 19
(2543 16)	3092.4	0.098 20	0.017 4	6.1 <i>1</i>	0.115 24	av E β =662.0 73; ε K=0.134 4; ε L=0.0146 5; ε M+=0.00255 8
(2616 16)	3019.3	0.23 3	0.035 4	5.80 6	0.26 3	av E β =695.2 73; ε K=0.118 4; ε L=0.0129 4; ε M+=0.00225 7
(2702 16)	2932.91	0.73 6	0.094 8	5.39 4	0.82 7	av E β =734.6 74; ε K=0.102 3; ε L=0.0112 3; ε M+=0.00195 6
(2778 16)	2857.1	0.48 6	0.054 7	5.66 6	0.53 7	av Eβ=769.3 74; εK=0.0903 24; εL=0.0099 3; εM+=0.00172 5
(2794 16)	2840.53	0.50 5	0.055 5	5.66 5	0.55 5	av Eβ=776.9 74; εK=0.0880 23; εL=0.00961 25; εM+=0.00168 5
(2842 16)	2792.98	1.58 14	0.160 14	5.21 4	1.74 15	av Eβ=798.7 74; εK=0.0817 21; εL=0.00892 23; εM+=0.00156 4
(2951 16)	2683.96	1.37 9	0.116 8	5.38 4	1.49 10	av Eβ=848.9 74; εK=0.0693 17; εL=0.00756 19; εM+=0.00132 4
(3163 16)	2472.50	1.29 8	0.079 6	5.60 4	1.37 9	av E β =946.9 75; ε K=0.0514 12; ε L=0.00561 13; ε M+=0.000980 22
(3277 16)	2358.13	1.29 9	0.068 5	5.70 4	1.36 9	av Eβ=1000.2 75; εK=0.0442 10; εL=0.00483 10; εM+=0.000843 18

Continued on next page (footnotes at end of table)

			⁶¹ Zn ε decay (89.1 s) 1970Ho29			1972Du09 (continued)				
ϵ, β^+ radiations (continued)										
E(decay)	E(level)	Iβ ⁺ ‡#	I $\varepsilon^{\ddagger \#}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \#}$	Comments				
(3546 16)	2088.86	0.58 6	0.022 2	6.27 5	0.60 6	av E β =1126.3 76; ε K=0.0318 6; ε L=0.00347 7; ε M+=0.000606 12				
(3702 16)	1932.60	0.79 11	0.024 3	6.25 6	0.81 11	av Eβ=1199.9 76; εK=0.0267 5; εL=0.00291 6; εM+=0.000509 9				
(3731 16)	1904.5	0.23 6	0.0070 18	6.8 1	0.24 6	av Eβ=1213.1 76; εK=0.0259 5; εL=0.00283 5; εM+=0.000493 9				
(3903 [@] 16)	1732.4	<0.16	<0.0027	>7.5	<0.16	 av Eβ=1294.5 76; εK=0.0216 4; εL=0.00236 4; εM+=0.000411 7 No β feeding is expected to this level, small apparent feeding of <0.11% 5 is probably due to missing γ rays from higher levels. 				
(3975 16)	1660.44	10.8 7	0.252 17	5.30 <i>3</i>	11.1 7	av $E\beta$ =1328.7 76; εK =0.0201 4; εL =0.00219 4; εM +=0.000383 7				
(4240 16)	1394.52	0.66 6	0.012 1	6.69 4	0.67 6	av Eβ=1455.2 77; εK=0.01559 23; εL=0.00170 3; εM+=0.000297 5				
(4324 [@] 16)	1310.94	<0.098	< 0.002	>7.6	<0.10	av E β =1495.0 77; ε K=0.01446 21; ε L=0.001576 23; ε M+=0.000275 4 No β feeding is expected to this level, small apparent feeding of <0.10% is probably due to missing γ rays from higher levels				
(4665 16)	970.10	0.46 19	0.0057 23	7.1 2	0.47 19	av E β =1658.2 77; ε K=0.01082 15; ε L=0.001179 16; ε M+=0.000206 3				
(5160 16)	474.98	10.8 6	0.091 5	5.97 <i>3</i>	10.9 6	av E β =1896.6 78; ε K=0.00743 9; ε L=0.000809 10; ε M+=0.0001413 1				
(5635 16)	0.0	66.3 17	0.405 12	5.40 2	66.7 17	av E β =2126.5 78; ε K=0.00539 6; ε L=0.000587 6; ε M+=0.0001025 1				

[†] From intensity imbalance at each level.

[‡] From I(γ +ce) and theoretical β^+/ε .

[#] Absolute intensity per 100 decays.

[@] Existence of this branch is questionable.

$\gamma(^{61}Cu)$

I γ normalization: Measured annihilation radiation intensity is 2600 130 (1969Ho02) relative to 100 for 1660 γ . From theoretical

 β^+/ϵ ratios for g.s. and some of the intensely populated levels, intensity of electron capture fraction is estimated as 5.0 relative units, thus the total I($\beta^++\epsilon$)=1305 65 units which gives normalization factor of 0.0766 38 for 100 decays.

The 1234.0 γ and 1289.8 γ seen by 1970Ho29 were not observed by 1972Du09 (I $\gamma \le 0.6$).

E_{γ}	$I_{\gamma}^{\dagger @}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	Comments
^x 149.0 3	2.2 9						
265.9 1	7.0 4	1660.44	$3/2^{-}$	1394.52 5/2-			
421 [#] 2	<1.2 [#]	1732.4	$7/2^{-}$	1310.94 7/2-	M1(+E2)	+0.08 7	
426.0 4	1.9 <i>1</i>	2358.13	$3/2^{-}$	1932.60 3/2-			
475.0 <i>1</i>	216 3	474.98	1/2-	0.0 3/2-	M1+E2	0.04	δ: theoretical estimate by 1972Ca20 adopted by 1973Sa19 in (<i>α</i> , pγ).
594.2 [#] 15	0.8 [#] 5	1904.5	5/2-	1310.94 7/2-	M1+E2	-0.05 3	
^x 604.5 [#] 10	<1.1 [#]						
^x 638.2 [#] 5	<1.0 [#]						

			61 Zn ε decay (8	89.1 s)	970Ho2	9,1972Du09	(continued)	
				<u>γ(⁶¹Cι</u>	ı) (conti	nued)		
E_{γ}	I_{γ}^{\dagger}	E _i (level)	${ m J}^{\pi}_i$	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	Comments
690.3 <i>1</i>	24.0 18	1660.44	3/2-	970.10	5/2-	M1(+E2)	+0.05 19	
697.6 I	5.5 5	2358.13	3/2	1660.44	$\frac{3}{2}$			
/51.6 /	4.0 5	2840.53	1/2 ,3/2	2088.86	(1/2)	F2		
919.0 3	1.2 2	1394.52	5/2 5/2-	4/4.98	1/2	E_2 M1 + E2	0.14.4	
934.4 3	1.1 3	1904.3	5/2	970.10	5/2	MIT+E2	-0.14 4	
970.0^{m} 3	33.0" 15	970.10	5/2-	0.0	3/2-	M1+E2	-0.35 4	
1131.9 # 8	2.3 # 14	2792.98	5/2-	1660.44	3/2-			
^x 1147.3 <i>3</i>	2.0 3							
1185.3 3	22.1 14	1660.44	3/2-	474.98	1/2-	M1+E2		$\delta: \geq 0.26 \text{ and } \leq 1.00 \text{ from}$ ($\alpha, p\gamma$).
1311.0 <i>I</i>	12.0 2	1310.94	7/2-	0.0	3/2-	E2		
1394.6 <i>1</i>	15.6 4	1394.52	5/2-	0.0	3/2-	M1+E2	-3.55 18	
1457.8 <i>1</i>	4.0 12	1932.60	3/2-	474.98	$1/2^{-}$	M1+E2	+0.20 10	
1482.1 <i>1</i>	10.1 3	2792.98	5/2-	1310.94	$7/2^{-}$			
1502.4 <i>1</i>	1.8 2	2472.50	3/2-	970.10	$5/2^{-}$			
1538.9 2	1.09 10	2932.91	3/2-	1394.52	5/2-			
^x 1565.6 [#] 14	<1.4 [#]							
1613.3 2	3.8 <i>3</i>	2088.86	$(1/2)^{-}$	474.98	$1/2^{-}$			
1660.4 <i>1</i>	100.0 23	1660.44	3/2-	0.0	3/2-	M1+E2	+0.39 +10-18	
1732.6 [#] 15	<1.8 [#]	1732.4	7/2-	0.0	$3/2^{-}$	E2		
1883.1 <i>3</i>	6.15 12	2358.13	3/2-	474.98	$1/2^{-}$			
1904.1 9	1.17 <i>16</i>	1904.5	5/2-	0.0	$3/2^{-}$	M1+E2	+0.68 9	
1932.4 <i>1</i>	8.5 5	1932.60	3/2-	0.0	3/2-	M1+E2	+0.26 +12-8	
1997.4 2	15.1 4	2472.50	3/2-	474.98	$1/2^{-}$	M1(+E2)	-0.02 5	
2088.9 <i>1</i>	8.05 13	2088.86	$(1/2)^{-}$	0.0	3/2-			
2209.0 2	10.8 6	2683.96	3/2-	474.98	$1/2^{-}$			
2358.6 <i>3</i>	4.2 3	2358.13	3/2-	0.0	$3/2^{-}$			
2381.4 20	1.4 2	2857.1	$1/2^{-}, 3/2^{-}$	474.98	$1/2^{-}$			
2457.6 4	8.4 5	2932.91	3/2-	474.98	$1/2^{-}$			
2472.1 [#] 20	1.0 [#] 4	2472.50	3/2-	0.0	3/2-			
2543.9 30	0.97 18	3019.3	3/2-	474.98	$1/2^{-}$	M1+E2	-0.6 4	
2683.3 6	8.7 6	2683.96	3/2-	0.0	$3/2^{-}$			
2792.3 <i>3</i>	10.3 <i>3</i>	2792.98	5/2-	0.0	$3/2^{-}$			
2842.8 6	3.18 <i>3</i>	2840.53	1/2-,3/2-	0.0	$3/2^{-}$			
2857.0 <i>3</i>	5.5 8	2857.1	$1/2^{-}, 3/2^{-}$	0.0	3/2-			
2931.8 <i>3</i>	1.2 3	2932.91	3/2-	0.0	3/2-			
3019.3 11	2.4 3	3019.3	3/2-	0.0	3/2-			
3092.3 13	1.5 3	3092.4	3/2-	0.0	3/2-			
3521.1 15	1.8 4	3521.2	1/2-,3/2-,5/2-	0.0	$3/2^{-}$			

[†] From 1970Ho29.
[‡] From Adopted Gammas.
[#] From 1972Du09.
[@] For absolute intensity per 100 decays, multiply by 0.0766 *38*.
^x γ ray not placed in level scheme.

⁶¹Zn ε decay (89.1 s) 1970Ho29,1972Du09

4