⁵⁹Co(³He,nγ) **2014Pa50**

T 1	•		
н	10	ഥ	rv

Type Author Citation Literature Cutoff Date
Full Evaluation Kazimierz Zuber, Balraj Singh NDS 125, 1 (2015) 25-Jan-2015

Two-proton transfer experiment.

2014Pa50: E(3 He)=22.5 MeV from iThemba Labs Separated Sector cyclotron facility. Target=9.6 mg/cm 2 thick. Gamma rays were detected using AFRODITE array of nine BGO-shielded Clover HPGe detectors, five at 90° and four at 135° with respect to the beam direction. Neutron detector consisted of an array of nine large-volume NE102A plastic scintillators, placed symmetrically about θ (lab)=0° and 90° to the beam direction. Measured E γ , n γ -coin. Deduced population strengths of L=0, 7/2 $^-$ states and compared to shell model and reaction cross section model calculations. $J^{\pi}(^{59}\text{Co})=7/2^-$.

61 Cu Levels

E(level) [†]	$J^{\pi \dagger}$	Two-proton stripping strengths#
0.0	3/2-	
475.1	$1/2^{-}$	
970.1	$5/2^{-}$	
1310.5 [‡]	$7/2^{-}$	100
1394.2	$5/2^{-}$	
1660.5	$3/2^{-}$	
1732.6 [‡]	$7/2^{-}$	68 14
1904.2	$5/2^{-}$	
1932.7	$3/2^{-}$	
1942.5 [‡]	$7/2^{-}$	115 30

[†] Taken by 2014Pa50 from ⁶¹Cu Adopted dataset in 1999-NDS of A=61 (1999Bh04). Energies are rounded values.

γ (61Cu)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Comments
475.1	1/2-	475		0.0 3/2	
970.1	5/2-	970		$0.0 \ 3/2^{-}$	
1310.5	$7/2^{-}$	340		970.1 5/2-	
		1311		$0.0 \ 3/2^{-}$	
1394.2	$5/2^{-}$	1394		$0.0 \ 3/2^{-}$	
1732.6	$7/2^{-}$	338	2.3	1394.2 5/2-	
		422	22.3	1310.5 7/2-	
		762	13.6	970.1 5/2-	
		1733	61.8	$0.0 \ 3/2^{-}$	
1942.5	$7/2^{-}$	210	10.0	1732.6 7/2-	
		548.0 [#]	0.5	1394.2 5/2-	E_{ν} : from ⁶¹ Cu Adopted dataset in 1999-NDS of A=61 (1999Bh04).
		632	19.2	1310.5 7/2-	
		972	60.0	970.1 5/2	
		1943	10.3	$0.0 \ 3/2^{-}$	

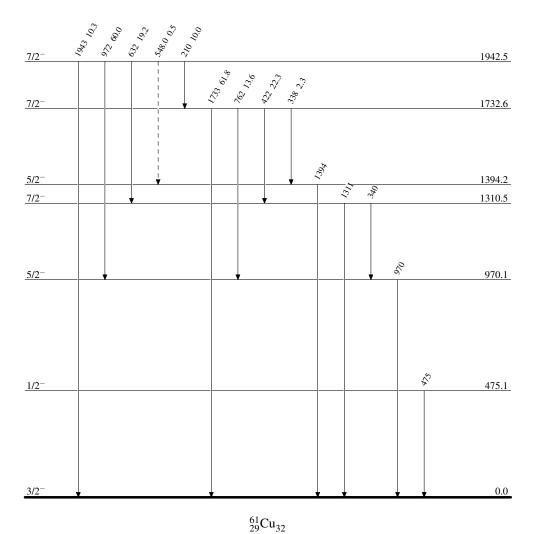
[†] From spectrum figure 3 and level-scheme figure 4 in 2014Pa50, unless otherwise stated.

[‡] Populated through L(2p)=0 from 7/2⁻ target.

 $^{^{\#}}$ Values are relative to 100 for the population of 1310, $7/2^{-}$ state.

[‡] Branching ratios deduced by 2014Pa50 from relative branching ratios in ⁶¹Cu Adopted dataset in 1999-NDS of A=61 (1999Bh04).

[#] Placement of transition in the level scheme is uncertain.


⁵⁹Co(³He,nγ) **2014Pa50**

Legend

Level Scheme

Intensities: % photon branching from each level

---- γ Decay (Uncertain)

