⁴⁰Ca(²⁴Mg,3pγ) 1999Vi12,1999Vi07,2004Iz01

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Kazimierz Zuber, Balraj Singh	NDS 125, 1 (2015)	25-Jan-2015				

2004Iz01: E(⁴⁰Ca)=96 MeV beam provided by LNL Tandem accelerator, bombarding a ²⁴Mg target. Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)$ (DCO), $\gamma\gamma$ (lin pol) with the EUROBALL Ge-detector array consisting of 26 Clover detectors and 15 Cluster detectors. Evaporated charged particles were detected in the 40-element silicon Δ E-E array ISIS.

1999Vi07, 1999Vi12: E=65 MeV. Measured E γ , $\gamma\gamma$, I γ , and $\gamma\gamma(\theta)$ (DCO) using the AYEBALL array with TESSA type detectors, eight EUROGAM detectors and one GAMMASPHERE detector.

⁶¹Cu Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0 969.99 8 1310.37 7	3/2 ⁻ 5/2 ⁻ 7/2 ⁻	
1732.49 7 1942.26 <i>18</i> 2336.23 <i>12</i>	7/2 ⁻ 7/2 ⁻ 9/2 ⁻	J ^{π} : 7/2 ⁻ based on 972 keV M1 γ to 5/2 ⁻ (2004Iz01). 1999Vi12 quote J=(7/2 ⁻).
2612.17 [#] 12 2627.14 11 2720.13 11	9/2 ⁻ 11/2 ⁻ 9/2 ⁺	
3015.8 <i>4</i> 3260.54 <i>10</i> 3548 67 [#] 20	$11/2^{-}$ $11/2^{-}$ $11/2^{(-)}$	J^{π} : =11/2 ⁻ , based on 1528.1 keV E2 γ to 7/2 ⁻ (2004Iz01). 1999Vi12 quote J=(11/2).
3779.44 <i>23</i> 3942.37 [#] <i>14</i>	$13/2^{-1}$ $13/2^{-1}$ $11/2^{+1}$	J^{π} : =13/2 ⁻ , based on 1443.2 keV E2 γ to 9/2 ⁻ (2004Iz01). 1999Vi12 quote J=(11/2 ⁻).
$4081.20 \ 13$ $4288.26^{\#} \ 16$ $4468.46^{\#} \ 14$	$13/2^{+}$ $13/2^{-}$ $15/2^{-}$	
4590.58 <i>12</i> 4820.25 [#] <i>16</i>	$13/2^+$ (15/2 ⁻)	
4989.70 [#] 24 5119.91 <i>13</i> 5137.99 [#] 25	$(15/2^+)$ $17/2^+$ $(15/2^+)$	
5464.4 [#] 5 5702.6 [#] 3	(15/2+)	
5855.82 17 6055.7# 5 6824.82 17 7388.84 19 7937.0 3	$ \begin{array}{c} 19/2^{+} \\ (17/2^{+}) \\ 21/2^{+} \\ 23/2^{+} \\ 23/2^{-} \\ 27/2^{-} \\ 2$	J ^{π} : 19/2 ⁺ , based on 735.9 keV M1 γ to 17/2 ⁺ (2004Iz01). 1999Vi12 quote J=19/2 ⁻ . J ^{π} : 21/2 ⁺ , based on 1704.9 keV E2 γ to 17/2 ⁺ (2004Iz01). 1999Vi12 quote J=(21/2 ⁺). J ^{π} : 23/2 ⁺ , based on 1533.0 keV E2 γ to 19/2 ⁺ (2004Iz01). J ^{π} : 23/2 ⁻ , based on 1112.2 keV E1 γ to 21/2 ⁺ (2004Iz01).
9408.5 3	21/2	J^{-1} : 2//2, based on 14/1.4 KeV E2 γ to 23/2 (20041201).

 † From least-squares fit to $E\gamma$ data.

[‡] Assignments based on DCO(1999Vi12), R(DCO) and linear polarization (2004Iz01).

[#] Not observed by 2004Iz01.

⁴⁰Ca(²⁴Mg,3pγ) 1999Vi12,1999Vi07,2004Iz01 (continued)

$\gamma(^{61}Cu)$

DCO=[(I(158°) gated at I(79°,101°,134°))/(I(79°,101°,134°) gated at I(158°))]× ε , where I is the number of counts in a peak and ε is an efficiency multiplication factor (1999Vi12 and 1999Vi07).

 $R_{DCO}=I(\gamma_1 \text{ at } 156^\circ; \text{gated with } \gamma_2 \text{ at } 77^\circ, 103^\circ)/I(\gamma_1 \text{ at } 77^\circ, 103^\circ; \text{gated with } \gamma_2 \text{ at } 156^\circ)$, CLOVER detectors at 77° and 103° are equivalent as far as DCO ratios are concerned. Known stretched E2 transitions were used for gating, such the $R_{DCO}=1.0$ is expected for stretched quadrupole transitions and $R_{DCO}\approx0.6$ for stretched dipoles, $\Delta J=0$ transitions have values similar to stretched quadrupole transitions (2004Iz01).

POL=[aN(perpendicular)–N(parallel)]/[aN(perpendicular)+N(parallel)], where $a(E\gamma)$ =normalization function determined from the ¹⁵²Eu source calibration. POL takes positive values for pure stretched electrical radiation and negative values for pure stretched magnetic radiation (2004Iz01).

E_{γ}^{\dagger}	I_{γ} ‡	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	Comments
209.6 2 300.2 3 326.4 4	2.6 <i>1</i> 1.8 <i>1</i> 2.5 <i>4</i>	1942.26 5119.91 5464.4	7/2 ⁻ 17/2 ⁺	1732.49 4820.25 5137.99	$7/2^{-}$ (15/2 ⁻) (15/2 ⁺)	M1 - E2	DCO=0.78 10. DCO=0.62 13. DCO=0.65 35.
340.2 2	7.5 5	1310.37	1/2	969.99	5/2	MI+E2	BCO=0.64 11. R(DCO)=0.56 4, POL=-0.104 23.
352.9 5 422.0 <i>1</i>	13.6 <i>13</i>	6055.7 1732.49	$(17/2^{+})$ $7/2^{-}$	5702.6 1310.37	$(15/2^{+})$ $7/2^{-}$		DCO=0.49 11. DCO=1.16 12. R(DCO)=1.28 6 POI =+0.105 15
529.3 <i>1</i>	23.7 15	5119.91	17/2+	4590.58	13/2+	E2	Mult.: $\Delta J=0$ transition. DCO=0.94 10.
564.6 2	1.1 <i>1</i>	5702.6	(15/2+)	5137.99	(15/2+)	D	R(DCO)=1.04 5, POL=+0.101 11. DCO=0.8 4.
632 7 0	627	3260 54	11/2-	2627 14	11/2-		$R(DCO)=0.57 \ 6.$ I _{γ} : from $\gamma\gamma$ coin. DCO=1.02.9
647.5 5 648.2 <i>1</i>	2.1 <i>3</i> 8.9 <i>3</i>	4590.58 3260.54	$13/2^+$ $11/2^-$	3942.37 2612.17	$11/2^+$ $9/2^-$		DC0-1.02 9.
651.6 <i>3</i> 669.5 <i>3</i>	1.7 <i>1</i> 8.6 <i>13</i>	5119.91 2612.17	17/2+ 9/2 ⁻	4468.46 1942.26	15/2 ⁻ 7/2 ⁻		DCO=0.55 8. DCO=0.95 12.
735.9 1	26.1 22	5855.82	19/2+	5119.91	17/2+	M1	DCO=0.56 3. R(DCO)=0.65 8, POL=-0.137 17.
762.5 <i>1</i> 849.7 2	85 8.59	1732.49 5137.99	$7/2^{-}$ (15/2 ⁺)	969.99 4288.26	5/2 ⁻ 13/2 ⁻		DCO=0.93 2. DCO=0.63 10.
879.22 908.52 036.53	8.9 15 2.6 2	2012.17 4989.70 3548.67	9/2 (15/2 ⁺) 11/2 ⁽⁻⁾	1/32.49 4081.20 2612.17	$\frac{1}{2}$ $\frac{1}{2}$		DCO=0.94 1. DCO=0.30 1. DCO=0.94 24
968 969.9 <i>1</i>	36.7 7	6824.82 969.99	$21/2^+$ $5/2^-$	5855.82 0	19/2 ⁺ 3/2 ⁻	M1+E2	E _{γ} : γ transition from Fig. 3 of 2004Iz01. DCO=0.45 <i>3</i> .
972	7.1 4	1942.26	7/2-	969.99	5/2-	M1	R(DCO)=0.30 2, POL=+0.015 13. I _γ : from $\gamma\gamma$ coin, doublet 969.9 keV to g.s.
987.5 <i>3</i>	19.8 7	2720.13	9/2+	1732.49	7/2-	E1	$POL=-0.044 \ 24.$ DCO=0.61 5. $P(DCO)=0.52 \ 3 \ POL=+0.050 \ 17.$
1026.3 5	4.5 8	2336.23	9/2-	1310.37	7/2-	M1+E2	R(DCO)=0.32 3, $POL=+0.030$ 77. DCO=0.33 9. R(DCO)=0.40 5, $POL=+0.03$ 3.
1038.5 2	24.8 8	5119.91	17/2+	4081.20	13/2+	E2	DCO=1.02 4. R(DCO)=0.95 4, POL=+0.063 16.
1041.9 2 1065.5 4	12.0 <i>13</i> 10.8 6	4590.58 4081.20	13/2 ⁺ 13/2 ⁺	3548.67 3015.8	$11/2^{(-)}$ $11/2^{-}$	E1	DCO=0.67 1. DCO=0.66 9.
1112.2 <i>3</i>	11.1 8	7937.0	23/2-	6824.82	21/2+	E1	R(DCO)=0.52 3, $POL=+0.028$ 14. DCO=0.82 15. R(DCO)=0.51 2 POL=+0.056 14
1222.2 1	4.0 5	3942.37	$11/2^{+}$	2720.13	9/2+		DCO=0.46 11.

Continued on next page (footnotes at end of table)

⁴⁰ Ca(²⁴ Mg,3pγ) 1999Vi12,1999Vi07,2004Iz01 (continued)							
γ (⁶¹ Cu) (continued)							
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.#	Comments
1310.4 <i>1</i>	100 6	1310.37	7/2-	0	3/2-	E2	DCO=1.10 4.
							R(DCO)=1.04 4, POL=+0.104 9.
1316.9 <i>1</i>	23 4	2627.14	$11/2^{-}$	1310.37	$7/2^{-}$	E2	DCO=1.03 10.
							R(DCO)=1.04 4, POL=+0.082 16.
1330.0 <i>1</i>	11.6 <i>19</i>	4590.58	$13/2^{+}$	3260.54	$11/2^{-}$	E1	DCO=0.63 4.
							R(DCO)=0.69 5, POL=+0.069 21.
1361.0 <i>1</i>	35.9 21	4081.20	$13/2^{+}$	2720.13	9/2+	E2	DCO=0.94 12.
10// 0 1	115.01	2226 22	0.12-	0.60.00	5 /0-		R(DCO)=1.024, POL=+0.11515.
1366.2 1	14.7 21	2336.23	9/2	969.99	5/2	E2	DCO=1.09 II.
1400 7 1	20.9.14	2720 12	0/2+	1210.27	7/2-	E1	$POL=+0.110 \ 18.$
1409.7 1	20.8 14	2720.13	9/2	1310.37	1/2	EI	DCO=0.50 S. $P(DCO)=0.51$ 2. $POL=\pm 0.064$ 10.
1443 2 2	12.3	3770 11	$13/2^{-}$	2226.22	$0/2^{-}$	F2	$R(DCO)=0.515, FOL=\pm0.00410.$ $R(DCO)=1.07, 0, POL=\pm0.05.4$
1471 4 3	7116	9408 5	$\frac{15/2}{27/2^{-}}$	7937.0	23/2-	E2 F2	$DCO = 1.12.8 POI = \pm 0.113.17$
1528 1 1	17.4	3260.54	$\frac{27}{2}$ $11/2^{-}$	1732.49	$\frac{25}{2}$	E2	DCO=1.12 0, $TOL=10.115$ 77.
1520.1 1	17 7	3200.31	11/2	1752.17	172		B(DCO)=1.02.9 POL=+0.11.5
1533.0 /	3.2.2	7388.84	$23/2^{+}$	5855.82	$19/2^{+}$	E2	DCO=0.50 14.
			_=-/ =				R(DCO)=1.02 10, $POL=+0.060$ 19.
1559.4 2	6.0 4	4820.25	$(15/2^{-})$	3260.54	$11/2^{-}$		DCO=1.50 <i>12</i> .
1704.9 <i>1</i>	11.1 10	6824.82	$21/2^{+}$	5119.91	$17/2^{+}$	E2	DCO=1.18 3.
							R(DCO)=0.90 4, POL=+0.075 22.
							E_{γ} : 1704.9+1706 keV a doublet structure.
1706 <i>1</i>	23.6 21	3015.8	$11/2^{-}$	1310.37	$7/2^{-}$	E2	R(DCO)=0.90 4, POL=+0.055 22.
							E_{γ} : 1704.9+1706 keV a doublet structure.
1732.5 <i>1</i>	28.0 16	1732.49	7/2-	0	3/2-	E2	DCO=0.93 7.
							R(DCO)=1.04 4, POL=+0.062 20.
1841.3 <i>1</i>	12.9 10	4468.46	15/2-	2627.14	11/2-		DCO=1.06 21.
1870.5 2	9.4 <i>3</i>	4590.58	$13/2^{+}$	2720.13	9/2+	E2	DCO=1.04 4.
1050 0 3	40.0	1000.05	10/0-	2226.22	0.10-		R(DCO)=1.12 6, $POL=+0.11$ 3.
1952.0 1	4.8 2	4288.26	$13/2^{-1}$	2336.23	9/2 ⁻		DCO=1.02 7.
19/5 1	1.8 4	6055.7	$(17/2^{+})$	4081.20	$13/2^{+}$		
2193.6 2	4.4 8	4820.25	$(15/2^{-})$	2627.14	$11/2^{-}$		DCO=0.6 4.

[†] From 1999Vi12.
[‡] Intensities listed are singles. 1999Vi12 also quote γγ coin intensities.
[#] From DCO (1999Vi12). R(DCO) and linear polarization (2004Iz01) values are given in comments.

 $^{61}_{29}Cu_{32}$

4

